コード例 #1
0
        public void SpeedTest()
        {
            int inwidth = 512, inheight = 512, channels = 32, ksize = 3, stride = 2;
            int outwidth = (inwidth - ksize) / stride + 1, outheight = (inheight - ksize) / stride + 1;

            OverflowCheckedTensor x_tensor  = new OverflowCheckedTensor(Shape.Map2D(channels, inwidth, inheight));
            OverflowCheckedTensor gy_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, outwidth, outheight));

            OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel2D(channels, 1, ksize, ksize));

            ChannelwiseKernelProduct ope    = new ChannelwiseKernelProduct(inwidth, inheight, channels, ksize, ksize, stride);

            Stopwatch sw = new Stopwatch();

            sw.Start();

            ope.Execute(x_tensor, gy_tensor, gw_tensor);
            ope.Execute(x_tensor, gy_tensor, gw_tensor);
            ope.Execute(x_tensor, gy_tensor, gw_tensor);
            ope.Execute(x_tensor, gy_tensor, gw_tensor);

            sw.Stop();

            Console.WriteLine($"{sw.ElapsedMilliseconds / 4} msec");
        }
コード例 #2
0
        public void ExecuteTest()
        {
            float max_err = 0;

            foreach (int batch in new int[] { 1, 2 })
            {
                foreach (int channels in new int[] { 1, 2, 3, 4, 5, 10, 15, 20 })
                {
                    foreach (int kheight in new int[] { 1, 3, 5 })
                    {
                        foreach (int kwidth in new int[] { 1, 3, 5 })
                        {
                            foreach (int stride in new int[] { 1, 2, 3 })
                            {
                                foreach (int inwidth in new int[] { 8, 9, 13, 17 })
                                {
                                    foreach (int inheight in new int[] { 8, 9, 19, 23 })
                                    {
                                        int outwidth = (inwidth - kwidth) / stride + 1, outheight = (inheight - kheight) / stride + 1;

                                        float[] xval  = (new float[inwidth * inheight * channels * batch]).Select((_, idx) => idx * 1e-3f).ToArray();
                                        float[] gyval = (new float[outwidth * outheight * channels * batch]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray();

                                        Map2D x  = new Map2D(channels, inwidth, inheight, batch, xval);
                                        Map2D gy = new Map2D(channels, outwidth, outheight, batch, gyval);

                                        Filter2D gw = Reference(x, gy, kwidth, kheight, stride);

                                        OverflowCheckedTensor x_tensor  = new OverflowCheckedTensor(Shape.Map2D(channels, inwidth, inheight, batch), xval);
                                        OverflowCheckedTensor gy_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, outwidth, outheight, batch), gyval);

                                        OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel2D(channels, 1, kwidth, kheight));

                                        ChannelwiseKernelProduct ope = new ChannelwiseKernelProduct(inwidth, inheight, channels, kwidth, kheight, stride, batch);

                                        ope.Execute(x_tensor, gy_tensor, gw_tensor);

                                        float[] gw_expect = gw.ToArray();
                                        float[] gw_actual = gw_tensor.State;

                                        CollectionAssert.AreEqual(xval, x_tensor.State);
                                        CollectionAssert.AreEqual(gyval, gy_tensor.State);

                                        AssertError.Tolerance(gw_expect, gw_actual, 1e-7f, 1e-5f, ref max_err, $"mismatch value {channels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch}");

                                        Console.WriteLine($"pass: {channels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch}");
                                    }
                                }
                            }
                        }
                    }
                }
            }

            Console.WriteLine($"maxerr:{max_err}");
        }