public void SpeedTest() { int inwidth = 512, inheight = 512, channels = 32, ksize = 3, stride = 2; int outwidth = (inwidth - ksize) / stride + 1, outheight = (inheight - ksize) / stride + 1; OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, inwidth, inheight)); OverflowCheckedTensor gy_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, outwidth, outheight)); OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel2D(channels, 1, ksize, ksize)); ChannelwiseKernelProduct ope = new ChannelwiseKernelProduct(inwidth, inheight, channels, ksize, ksize, stride); Stopwatch sw = new Stopwatch(); sw.Start(); ope.Execute(x_tensor, gy_tensor, gw_tensor); ope.Execute(x_tensor, gy_tensor, gw_tensor); ope.Execute(x_tensor, gy_tensor, gw_tensor); ope.Execute(x_tensor, gy_tensor, gw_tensor); sw.Stop(); Console.WriteLine($"{sw.ElapsedMilliseconds / 4} msec"); }
public void ExecuteTest() { float max_err = 0; foreach (int batch in new int[] { 1, 2 }) { foreach (int channels in new int[] { 1, 2, 3, 4, 5, 10, 15, 20 }) { foreach (int kheight in new int[] { 1, 3, 5 }) { foreach (int kwidth in new int[] { 1, 3, 5 }) { foreach (int stride in new int[] { 1, 2, 3 }) { foreach (int inwidth in new int[] { 8, 9, 13, 17 }) { foreach (int inheight in new int[] { 8, 9, 19, 23 }) { int outwidth = (inwidth - kwidth) / stride + 1, outheight = (inheight - kheight) / stride + 1; float[] xval = (new float[inwidth * inheight * channels * batch]).Select((_, idx) => idx * 1e-3f).ToArray(); float[] gyval = (new float[outwidth * outheight * channels * batch]).Select((_, idx) => idx * 1e-3f).Reverse().ToArray(); Map2D x = new Map2D(channels, inwidth, inheight, batch, xval); Map2D gy = new Map2D(channels, outwidth, outheight, batch, gyval); Filter2D gw = Reference(x, gy, kwidth, kheight, stride); OverflowCheckedTensor x_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, inwidth, inheight, batch), xval); OverflowCheckedTensor gy_tensor = new OverflowCheckedTensor(Shape.Map2D(channels, outwidth, outheight, batch), gyval); OverflowCheckedTensor gw_tensor = new OverflowCheckedTensor(Shape.Kernel2D(channels, 1, kwidth, kheight)); ChannelwiseKernelProduct ope = new ChannelwiseKernelProduct(inwidth, inheight, channels, kwidth, kheight, stride, batch); ope.Execute(x_tensor, gy_tensor, gw_tensor); float[] gw_expect = gw.ToArray(); float[] gw_actual = gw_tensor.State; CollectionAssert.AreEqual(xval, x_tensor.State); CollectionAssert.AreEqual(gyval, gy_tensor.State); AssertError.Tolerance(gw_expect, gw_actual, 1e-7f, 1e-5f, ref max_err, $"mismatch value {channels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch}"); Console.WriteLine($"pass: {channels},{kwidth},{kheight},{stride},{inwidth},{inheight},{batch}"); } } } } } } } Console.WriteLine($"maxerr:{max_err}"); }