private void button1_Click_2(object sender, RoutedEventArgs e) { //以下修正 MotionDataHandler handler; string path; if (openMotionData(out handler, out path)) { CvMat resultMat = null; int length = handler.FrameCount; IEnumerable <CvMat> depthImages; Utility.LoadImages(handler.GetDepthImagePaths(), out depthImages); foreach (CvMat depthMat in depthImages) { CvSize depthUserSize = new CvSize(depthMat.Cols, depthMat.Rows); CvEx.InitCvMat(ref resultMat, depthMat, MatrixType.U8C3); resultMat.Zero(); double avgDepth = depthMat.Select(v => v.Val0).Where(v => v != 0).Average(); double pDepth = CvEx.Get2DSubPixel(depthMat, new CvPoint2D32f(_undistortion.CameraStruct.PrincipalX, _undistortion.CameraStruct.PrincipalY), 0) ?? 0; List <double>[] diffs = Enumerable.Range(0, depthUserSize.Width).Select(x => new List <double>()).ToArray(); unsafe { short *depthArr = depthMat.DataInt16; for (int y = 0; y < depthUserSize.Height; y++) { int offset = y * depthUserSize.Width; for (int x = 0; x < depthUserSize.Width - 1; x++) { short l = depthArr[offset + x]; short r = depthArr[offset + x + 1]; if (l != 0 && r != 0) { double ll = Math.Log(l); double rl = Math.Log(r); diffs[x].Add(ll - rl); } } } } double[] median = diffs.Select(x => x.Count > 0 ? CalcEx.GetMedian(x) : 0).ToArray(); double max = median.Select(x => Math.Abs(x)).Max(); for (int x = 0; x < depthUserSize.Width; x++) { resultMat.DrawLine(new CvPoint(x, 0), new CvPoint(x, resultMat.Rows), new CvScalar(Math.Max(median[x] / max * 255, 0), Math.Max(-median[x] / max * 255, 0), 0)); } resultMat.PutText(avgDepth.ToString("0.00000"), new CvPoint(0, 20), new CvFont(FontFace.HersheyPlain, 1, 1), new CvScalar(255, 255, 255)); resultMat.PutText(pDepth.ToString("0.00000"), new CvPoint(0, 40), new CvFont(FontFace.HersheyPlain, 1, 1), new CvScalar(255, 255, 255)); putImage(resultMat, PixelFormats.Rgb24); } } }
/// <summary> /// Jointから絶対座標を引くDictionary二つの間の距離を求めます /// </summary> /// <param name="jointWithAbsPosition1">骨格ごとの絶対座標1</param> /// <param name="jointWithAbsPosition2">骨格ごとの絶対座標2</param> /// <param name="mirrored">一方の骨格を左右反転した結果で距離を求めるかどうか</param> /// <returns></returns> static double getDistance(IDictionary <JointType, CvPoint3D64f> jointWithAbsPosition1, IDictionary <JointType, CvPoint3D64f> jointWithAbsPosition2, bool mirrored) { IEnumerable <JointType> joints2Alt = jointWithAbsPosition2.Keys.Select(j => mirrored ? CalcEx.GetMirroredJoint(j) : j); List <JointType> intersect = jointWithAbsPosition1.Keys.Intersect(joints2Alt).ToList(); List <double> distanceSqList = new List <double>(); foreach (JointType joint in intersect) { JointType jointAlt = mirrored ? CalcEx.GetMirroredJoint(joint) : joint; distanceSqList.Add(CvEx.GetDistanceSq(jointWithAbsPosition1[joint], jointWithAbsPosition2[jointAlt])); } // 中央値の平方根 return(Math.Sqrt(CalcEx.GetMedian(distanceSqList))); }
/// <summary> /// 統計情報を計算し格納する /// z = 0.904をデフォルトとする、このとき中央値から65%を網羅できる /// </summary> /// <param name="z">標準正規分布表のZ</param> public void CalcMedianBoneRange(double z = 0.904) { foreach (Bone bone in this.bones) { List <double> data = this.boneLengthSqLog[bone]; int skip = (int)(data.Count() * 0.3); int take = data.Count() - skip * 2; data.Sort(); // 上下30%を削除 data = data.Skip(skip).Take(take).ToList(); double median = CalcEx.GetMedian(data); double average = data.Average(); double std = Math.Abs(Math.Sqrt(data.Select(d => Math.Pow(d - average, 2)).Sum() / (data.Count() - 1))); double minLength = median - std * z; double maxLength = median + std * z; BoneStatistics bs = new BoneStatistics(minLength, maxLength, median, average, std); this.boneLengthSqStatistics.Add(bone, bs); } }
public static UserSegmentation[] Identification(FrameSequence frameseq, double maxDistance) { if (frameseq.Segmentations.Any(seg => seg == null)) { throw new InvalidOperationException("ユーザトラッキングデータがセグメンテーションされていません"); } HashSet <Tuple <RecordAndUser, RecordAndUser> > contemporaryList = new HashSet <Tuple <RecordAndUser, RecordAndUser> >(); for (int recordNo = 0; recordNo < frameseq.recordNum; recordNo++) { IEnumerable <MotionData> record = frameseq.GetMotionDataSequence(recordNo); int frameIndex = 0; foreach (MotionData motionData in record) { IList <ulong> users = motionData.bodies.ToList().Select(b => b.TrackingId).ToList(); foreach (var tuple in users.SelectMany(u => users.Select(v => new Tuple <RecordAndUser, RecordAndUser>(new RecordAndUser(recordNo, u), new RecordAndUser(recordNo, v))))) { contemporaryList.Add(tuple); } frameIndex++; } } DateTime beginTime = frameseq.startTime; DateTime endTime = frameseq.endTime; double frequency = frameseq.frameRate; TimeSpan increment = new TimeSpan((long)(10000000 / frequency)); long totalCount = (endTime.Ticks - beginTime.Ticks) / increment.Ticks; long totalIndex = 0; Dictionary <Tuple <RecordAndUser, RecordAndUser>, List <double> > distanceListMatrix = new Dictionary <Tuple <RecordAndUser, RecordAndUser>, List <double> >(); foreach (Frame frame in frameseq.Frames) { // 現在の時刻での各レコードの各ユーザの各骨格の絶対座標を求める Dictionary <ulong, Dictionary <JointType, CvPoint3D64f> >[] absPositions = new Dictionary <ulong, Dictionary <JointType, CvPoint3D64f> > [frameseq.recordNum]; for (int recordNo = 0; recordNo < frameseq.recordNum; recordNo++) { Dictionary <ulong, Dictionary <JointType, CvPoint3D64f> > recordUserPositions = new Dictionary <ulong, Dictionary <JointType, CvPoint3D64f> >(); foreach (SerializableBody body in frame.GetBodyList(recordNo)) { Dictionary <JointType, CvPoint3D64f> userPositions = new Dictionary <JointType, CvPoint3D64f>(); if (body.Joints == null) { continue; } foreach (var jointPair in body.Joints) { CvPoint3D64f posInCamera = jointPair.Value.Position.ToCvPoint3D(); CvPoint3D64f posInWorld = CvEx.ConvertPoint3D(posInCamera, frameseq.ToWorldConversions[recordNo]); userPositions[jointPair.Key] = posInWorld; } recordUserPositions[body.TrackingId] = userPositions; } absPositions[recordNo] = recordUserPositions; } // 現在の時刻で各レコード間のユーザ間の距離を求める for (int i = 0; i < frameseq.recordNum; i++) { if (absPositions[i] == null) { continue; } for (int j = i + 1; j < frameseq.recordNum; j++) { if (absPositions[j] == null) { continue; } foreach (var userJoint1 in absPositions[i]) { RecordAndUser recordUser1 = new RecordAndUser(i, userJoint1.Key); foreach (var userJoint2 in absPositions[j]) { RecordAndUser recordUser2 = new RecordAndUser(j, userJoint2.Key); double distanceNormal = getDistance(userJoint1.Value, userJoint2.Value, false); double distanceMirrored = getDistance(userJoint1.Value, userJoint2.Value, true); double distance = Math.Min(distanceNormal, distanceMirrored); Tuple <RecordAndUser, RecordAndUser> key = new Tuple <RecordAndUser, RecordAndUser>(recordUser1, recordUser2); List <double> distanceList; if (!distanceListMatrix.TryGetValue(key, out distanceList)) { distanceListMatrix[key] = distanceList = new List <double>(); } distanceList.Add(distance); } } } } totalIndex++; } // 中央値で集計して小さい順に並べる Dictionary <Tuple <RecordAndUser, RecordAndUser>, double> distanceMatrix = distanceListMatrix.ToDictionary(p => p.Key, p => CalcEx.GetMedian(p.Value)); List <Tuple <RecordAndUser, RecordAndUser, double> > neighborList = ( from x in distanceMatrix orderby x.Value select new Tuple <RecordAndUser, RecordAndUser, double>(x.Key.Item1, x.Key.Item2, x.Value) ).ToList(); IdentificationSet <RecordAndUser> identificationSet = new IdentificationSet <RecordAndUser>(); // 同一判定をする foreach (var neighbor in neighborList) { if (neighbor.Item3 > maxDistance) { identificationSet.Add(neighbor.Item1); identificationSet.Add(neighbor.Item2); continue; } IList <RecordAndUser> recordUsers1 = identificationSet.GetEquivalentElements(neighbor.Item1); IList <RecordAndUser> recordUsers2 = identificationSet.GetEquivalentElements(neighbor.Item2); // 同フレーム内にいるか判定 bool contemporary = ( from ru1 in recordUsers1 from ru2 in recordUsers2 select new Tuple <RecordAndUser, RecordAndUser>(ru1, ru2)).Any(pair => contemporaryList.Contains(pair)); if (!contemporary) { // 同フレーム内にいなければ同一視 identificationSet.MakeEquivalent(neighbor.Item1, neighbor.Item2); } } // 番号を圧縮 identificationSet.CompactIdentificationNumber(); // 新しいセグメンテーション番号を与える UserSegmentation[] ret = Enumerable.Range(0, frameseq.recordNum).Select(i => new UserSegmentation()).ToArray(); for (int recordNo = 0; recordNo < frameseq.recordNum; recordNo++) { foreach (var pair in frameseq.Segmentations[recordNo].Conversions) { int frameIndex = pair.Key; Dictionary <ulong, int> newConversions = new Dictionary <ulong, int>(); foreach (var conv in pair.Value) { int ident = identificationSet.ConvertToIdentificationNumber(new RecordAndUser(recordNo, conv.Key)); newConversions[conv.Key] = ident; } ret[recordNo].Conversions[frameIndex] = newConversions; } ret[recordNo].fixNumUsers(); } return(ret); }
private void buttonScalingScore_Click(object sender, RoutedEventArgs e) { int cols, rows; double horizLength, vertLength; if (!parseChessboardParameters(out cols, out rows, out horizLength, out vertLength)) { return; } // 以下改造 MotionDataHandler handler; string path; if (openMotionData(out handler, out path)) { CvMat displayMat1 = null; CvMat displayMat3 = null; CvMat displayMat4 = null; CvMat gray = null; int length = handler.FrameCount; if (length == 0) { return; } CvSize boardSize = new CvSize(cols, rows); CvSize imageSize = new CvSize(); List <Tuple <double, double> > pairs = new List <Tuple <double, double> >(); CvPoint2D32f[] lastCorners = null; IEnumerable <CvMat> colorImages, depthImages; Utility.LoadImages(handler.GetColorImagePaths(), out colorImages); Utility.LoadImages(handler.GetDepthImagePaths(), out depthImages); var images = colorImages.Zip(depthImages, (first, second) => Tuple.Create(first, second)); foreach (Tuple <CvMat, CvMat> imagePair in images) { CvMat imageMat = imagePair.Item1; CvMat depthMat = imagePair.Item2; if (displayMat4 == null) { displayMat4 = CvEx.InitCvMat(imageMat); } imageSize = new CvSize(imageMat.Cols, imageMat.Rows); CvPoint2D32f[] corners; int count; CvEx.InitCvMat(ref gray, imageMat, MatrixType.U8C1); imageMat.CvtColor(gray, ColorConversion.RgbToGray); if (gray.FindChessboardCorners(boardSize, out corners, out count, ChessboardFlag.AdaptiveThresh)) { CvEx.CloneCvMat(ref displayMat1, imageMat); CvTermCriteria criteria = new CvTermCriteria(50, 0.01); gray.FindCornerSubPix(corners, count, new CvSize(3, 3), new CvSize(-1, -1), criteria); CvPoint3D32f?[] cornerPoints = new CvPoint3D32f?[corners.Length]; for (int j = 0; j < corners.Length; j++) { CvPoint2D32f corner = corners[j]; double? value = CalcEx.BilateralFilterDepthMatSinglePixel(corner, depthMat, 100, 4, 9); if (value.HasValue) { cornerPoints[j] = new CvPoint3D32f(corner.X, corner.Y, value.Value); } } for (int x = 0; x < cols; x++) { for (int y = 0; y < rows; y++) { if (!cornerPoints[x + y * cols].HasValue) { continue; } CvPoint3D32f point1 = cornerPoints[x + y * cols].Value; CvPoint3D64f undistortPoint1 = this.UndistortionData.GetRealFromScreenPos(point1, imageSize); foreach (var offset in new[] { new { X = 1, Y = 0, D = horizLength }, new { X = 0, Y = 1, D = vertLength } }) { int dx = x + offset.X; int dy = y + offset.Y; if (dx >= cols || dy >= rows) { continue; } if (!cornerPoints[dx + dy * cols].HasValue) { continue; } CvPoint3D32f point2 = cornerPoints[dx + dy * cols].Value; CvPoint3D64f undistortPoint2 = this.UndistortionData.GetRealFromScreenPos(point2, imageSize); double distance = Math.Sqrt(CvEx.GetDistanceSq(undistortPoint1, undistortPoint2)); double scale = distance / offset.D; CvColor color = CalcEx.HSVtoRGB(Math.Max(0, Math.Min(300, scale * 600 - 450)), scale, 2 - scale); displayMat4.DrawLine((int)point1.X, (int)point1.Y, (int)point2.X, (int)point2.Y, new CvScalar(color.R, color.G, color.B), 1, LineType.AntiAlias); pairs.Add(new Tuple <double, double>(distance, offset.D)); } } } CvEx.DrawChessboardCornerFrame(displayMat1, boardSize, corners, new CvScalar(64, 128, 64)); displayMat1.DrawChessboardCorners(boardSize, corners, true); lastCorners = corners; putImage(displayMat1, PixelFormats.Rgb24); } else { CvEx.CloneCvMat(ref displayMat3, imageMat); putImage(displayMat3, PixelFormats.Rgb24); } } CvMat displayMat2 = CvEx.InitCvMat(displayMat1); displayMat1.Undistort2(displayMat2, this.UndistortionData.CameraStruct.CreateCvMat(), this.UndistortionData.DistortStruct.CreateCvMat(true)); if (lastCorners != null) { drawUndistortedCornerFrame(displayMat2, lastCorners, boardSize); } displayMat2.PutText(string.Format("Min: {0}", pairs.Min(x => x.Item1 / x.Item2)), new CvPoint(20, 20), new CvFont(FontFace.HersheyPlain, 1, 1), new CvScalar(255, 255, 255)); displayMat2.PutText(string.Format("Max: {0}", pairs.Max(x => x.Item1 / x.Item2)), new CvPoint(20, 40), new CvFont(FontFace.HersheyPlain, 1, 1), new CvScalar(255, 255, 255)); displayMat2.PutText(string.Format("Avg: {0}", pairs.Average(x => x.Item1 / x.Item2)), new CvPoint(20, 60), new CvFont(FontFace.HersheyPlain, 1, 1), new CvScalar(255, 255, 255)); displayMat2.PutText(string.Format("Med: {0}", CalcEx.GetMedian(pairs.Select(x => x.Item1 / x.Item2).ToList())), new CvPoint(20, 80), new CvFont(FontFace.HersheyPlain, 1, 1), new CvScalar(255, 255, 255)); putImage(displayMat4, PixelFormats.Rgb24); displayLabels(); } }