コード例 #1
0
ファイル: example5.cs プロジェクト: tlming16/COPASI
    static void Main()
    {
        Debug.Assert(CCopasiRootContainer.getRoot() != null);
        // create a new datamodel
        CCopasiDataModel dataModel = CCopasiRootContainer.addDatamodel();

        Debug.Assert(CCopasiRootContainer.getDatamodelList().size() == 1);
        // get the model from the datamodel
        CModel model = dataModel.getModel();

        Debug.Assert(model != null);
        model.setVolumeUnit(CUnit.fl);
        model.setTimeUnit(CUnit.s);
        model.setQuantityUnit(CUnit.fMol);
        CModelValue fixedModelValue = model.createModelValue("F");

        Debug.Assert(fixedModelValue != null);
        fixedModelValue.setStatus(CModelEntity.FIXED);
        fixedModelValue.setInitialValue(3.0);
        CModelValue variableModelValue = model.createModelValue("V");

        Debug.Assert(variableModelValue != null);
        variableModelValue.setStatus(CModelEntity.ASSIGNMENT);
        // we create a very simple assignment that is easy on the optimization
        // a parabole with the minimum at x=6 should do just fine
        string s = fixedModelValue.getValueReference().getCN().getString();

        s = "(<" + s + "> - 6.0)^2";
        variableModelValue.setExpression(s);
        // now we compile the model and tell COPASI which values have changed so
        // that COPASI can update the values that depend on those
        model.compileIfNecessary();
        ObjectStdVector changedObjects = new ObjectStdVector();

        changedObjects.Add(fixedModelValue.getInitialValueReference());
        changedObjects.Add(variableModelValue.getInitialValueReference());
        model.updateInitialValues(changedObjects);

        // now we set up the optimization

        // we want to do an optimization for the time course
        // so we have to set up the time course task first
        CTrajectoryTask timeCourseTask = (CTrajectoryTask)dataModel.getTask("Time-Course");

        Debug.Assert(timeCourseTask != null);
        // since for this example it really doesn't matter how long we run the time course
        // we run for 1 second and calculate 10 steps
        // run a deterministic time course
        timeCourseTask.setMethodType(CTaskEnum.deterministic);

        // pass a pointer of the model to the problem
        timeCourseTask.getProblem().setModel(dataModel.getModel());

        // get the problem for the task to set some parameters
        CTrajectoryProblem problem = (CTrajectoryProblem)timeCourseTask.getProblem();

        Debug.Assert(problem != null);

        // simulate 10 steps
        problem.setStepNumber(10);
        // start at time 0
        dataModel.getModel().setInitialTime(0.0);
        // simulate a duration of 1 time units
        problem.setDuration(1);
        // tell the problem to actually generate time series data
        problem.setTimeSeriesRequested(true);

        // get the optimization task
        COptTask optTask = (COptTask)dataModel.getTask("Optimization");

        Debug.Assert(optTask != null);
        // we want to use Levenberg-Marquardt as the optimization method
        optTask.setMethodType(CTaskEnum.LevenbergMarquardt);

        // next we need to set subtask type on the problem
        COptProblem optProblem = (COptProblem)optTask.getProblem();

        Debug.Assert(optProblem != null);
        optProblem.setSubtaskType(CTaskEnum.timeCourse);

        // we create the objective function
        // we want to minimize the value of the variable model value at the end of
        // the simulation
        // the objective function is normally minimized
        string objectiveFunction = variableModelValue.getObject(new CCopasiObjectName("Reference=Value")).getCN().getString();

        // we need to put the angled brackets around the common name of the object
        objectiveFunction = "<" + objectiveFunction + ">";
        // now we set the objective function in the problem
        optProblem.setObjectiveFunction(objectiveFunction);

        // now we create the optimization items
        // i.e. the model elements that have to be changed during the optimization
        // in order to get to the optimal solution
        COptItem optItem = optProblem.addOptItem(new CCopasiObjectName(fixedModelValue.getObject(new CCopasiObjectName("Reference=InitialValue")).getCN()));

        // we want to change the fixed model value from -100 to +100 with a start
        // value of 50
        optItem.setStartValue(50.0);
        optItem.setLowerBound(new CCopasiObjectName("-100"));
        optItem.setUpperBound(new CCopasiObjectName("100"));

        // now we set some parameters on the method
        // these parameters are specific to the method type we set above
        // (in this case Levenberg-Marquardt)
        COptMethod optMethod = (COptMethod)optTask.getMethod();

        Debug.Assert(optMethod != null);

        // now we set some method parameters for the optimization method
        // iteration limit
        CCopasiParameter parameter = optMethod.getParameter("Iteration Limit");

        Debug.Assert(parameter != null);
        parameter.setIntValue(2000);
        // tolerance
        parameter = optMethod.getParameter("Tolerance");
        Debug.Assert(parameter != null);
        parameter.setDblValue(1.0e-5);

        // create a report with the correct filename and all the species against
        // time.
        CReportDefinitionVector reports = dataModel.getReportDefinitionList();
        // create a new report definition object
        CReportDefinition report = reports.createReportDefinition("Report", "Output for optimization");

        // set the task type for the report definition to timecourse
        report.setTaskType(CTaskEnum.optimization);
        // we don't want a table
        report.setIsTable(false);
        // the entries in the output should be seperated by a ", "
        report.setSeparator(new CCopasiReportSeparator(", "));

        // we need a handle to the header and the body
        // the header will display the ids of the metabolites and "time" for
        // the first column
        // the body will contain the actual timecourse data
        ReportItemVector header = report.getHeaderAddr();
        ReportItemVector body   = report.getBodyAddr();

        // in the report header we write two strings and a separator
        header.Add(new CRegisteredObjectName(new CCopasiStaticString("best value of objective function").getCN().getString()));
        header.Add(new CRegisteredObjectName(report.getSeparator().getCN().getString()));
        header.Add(new CRegisteredObjectName(new CCopasiStaticString("initial value of F").getCN().getString()));
        // in the report body we write the best value of the objective function and
        // the initial value of the fixed parameter separated by a komma
        body.Add(new CRegisteredObjectName(optProblem.getObject(new CCopasiObjectName("Reference=Best Value")).getCN().getString()));
        body.Add(new CRegisteredObjectName(report.getSeparator().getCN().getString()));
        body.Add(new CRegisteredObjectName(fixedModelValue.getObject(new CCopasiObjectName("Reference=InitialValue")).getCN().getString()));


        // set the report for the task
        optTask.getReport().setReportDefinition(report);
        // set the output filename
        optTask.getReport().setTarget("example5.txt");
        // don't append output if the file exists, but overwrite the file
        optTask.getReport().setAppend(false);


        bool result = false;

        try
        {
            result = optTask.processWithOutputFlags(true, (int)CCopasiTask.ONLY_TIME_SERIES);
        }
        catch (System.ApplicationException e)
        {
            System.Console.Error.WriteLine("ERROR: " + e.Message);
            String lastErrors = optTask.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }

            System.Environment.Exit(1);
        }
        if (!result)
        {
            System.Console.Error.WriteLine("Running the optimization failed.");
            String lastErrors = optTask.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }

            System.Environment.Exit(1);
        }
        // now we check if the optimization actually got the correct result
        // the best value it should have is 0 and the best parameter value for
        // that result should be 6 for the initial value of the fixed parameter
        double bestValue = optProblem.getSolutionValue();

        Debug.Assert(System.Math.Abs(bestValue) < 1e-3);
        // we should only have one solution variable since we only have one
        // optimization item
        Debug.Assert(optProblem.getSolutionVariables().size() == 1);
        double solution = optProblem.getSolutionVariables().get(0);

        Debug.Assert(System.Math.Abs((solution - 6.0) / 6.0) < 1e-3);
    }
コード例 #2
0
ファイル: example6.cs プロジェクト: tobiaselsaesser/COPASI
    static void Main(string[] args)
    {
        Debug.Assert(CRootContainer.getRoot() != null);
        // create a new datamodel
        CDataModel dataModel = CRootContainer.addDatamodel();

        Debug.Assert(CRootContainer.getDatamodelList().size() == 1);
        // first we load a simple model
        try
        {
            // load the model
            dataModel.importSBMLFromString(MODEL_STRING);
        }
        catch
        {
            System.Console.Error.WriteLine("Error while importing the model.");
            System.Environment.Exit(1);
        }

        // now we need to run some time course simulation to get data to fit
        // against

        // get the trajectory task object
        CTrajectoryTask trajectoryTask = (CTrajectoryTask)dataModel.getTask("Time-Course");

        // run a deterministic time course
        trajectoryTask.setMethodType(CTaskEnum.Method_deterministic);

        // pass a pointer of the model to the problem
        trajectoryTask.getProblem().setModel(dataModel.getModel());

        // activate the task so that it will be run when the model is saved
        // and passed to CopasiSE
        trajectoryTask.setScheduled(true);

        // get the problem for the task to set some parameters
        CTrajectoryProblem problem = (CTrajectoryProblem)trajectoryTask.getProblem();

        // simulate 4000 steps
        problem.setStepNumber(4000);
        // start at time 0
        dataModel.getModel().setInitialTime(0.0);
        // simulate a duration of 400 time units
        problem.setDuration(400);
        // tell the problem to actually generate time series data
        problem.setTimeSeriesRequested(true);

        // set some parameters for the LSODA method through the method
        // Currently we don't use the method to set anything
        //CTrajectoryMethod method = (CTrajectoryMethod)trajectoryTask.getMethod();

        bool result = true;

        try
        {
            // now we run the actual trajectory
            result = trajectoryTask.processWithOutputFlags(true, (int)CCopasiTask.ONLY_TIME_SERIES);
        }
        catch
        {
            System.Console.Error.WriteLine("Error. Running the time course simulation failed.");
            String lastErrors = trajectoryTask.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }

            System.Environment.Exit(1);
        }
        if (result == false)
        {
            System.Console.Error.WriteLine("An error occured while running the time course simulation.");
            String lastErrors = trajectoryTask.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }
            System.Environment.Exit(1);
        }

        // we write the data to a file and add some noise to it
        // This is necessary since COPASI can only read experimental data from
        // file.
        CTimeSeries timeSeries = trajectoryTask.getTimeSeries();

        // we simulated 100 steps, including the initial state, this should be
        // 101 step in the timeseries
        Debug.Assert(timeSeries.getRecordedSteps() == 4001);
        uint i;
        uint iMax = (uint)timeSeries.getNumVariables();

        // there should be four variables, the three metabolites and time
        Debug.Assert(iMax == 5);
        uint lastIndex = (uint)timeSeries.getRecordedSteps() - 1;
        // open the file
        // we need to remember in which order the variables are written to file
        // since we need to specify this later in the parameter fitting task
        List <uint>   indexSet    = new List <uint>();
        List <CMetab> metabVector = new List <CMetab>();

        // write the header
        // the first variable in a time series is a always time, for the rest
        // of the variables, we use the SBML id in the header
        double random = 0.0;

        System.Random rand_gen = new System.Random();
        try
        {
            System.IO.StreamWriter os = new System.IO.StreamWriter("fakedata_example6.txt");
            os.Write("# time ");
            CKeyFactory keyFactory = CRootContainer.getKeyFactory();
            Debug.Assert(keyFactory != null);
            for (i = 1; i < iMax; ++i)
            {
                string      key = timeSeries.getKey(i);
                CDataObject obj = keyFactory.get(key);
                Debug.Assert(obj != null);
                // only write header data or metabolites
                System.Type type = obj.GetType();
                if (type.FullName.Equals("org.COPASI.CMetab"))
                {
                    os.Write(", ");
                    os.Write(timeSeries.getSBMLId(i, dataModel));
                    CMetab m = (CMetab)obj;
                    indexSet.Add(i);
                    metabVector.Add(m);
                }
            }
            os.Write("\n");
            double data = 0.0;
            for (i = 0; i < lastIndex; ++i)
            {
                uint   j;
                string s = "";
                for (j = 0; j < iMax; ++j)
                {
                    // we only want to  write the data for metabolites
                    // the compartment does not interest us here
                    if (j == 0 || indexSet.Contains(j))
                    {
                        // write the data with some noise (+-5% max)
                        random = rand_gen.NextDouble();
                        data   = timeSeries.getConcentrationData(i, j);
                        // don't add noise to the time
                        if (j != 0)
                        {
                            data += data * (random * 0.1 - 0.05);
                        }
                        s = s + (System.Convert.ToString(data));
                        s = s + ", ";
                    }
                }
                // remove the last two characters again
                os.Write(s.Substring(0, s.Length - 2));
                os.Write("\n");
            }
            os.Close();
        }
        catch (System.ApplicationException e)
        {
            System.Console.Error.WriteLine("Error. Could not write time course data to file.");
            System.Console.WriteLine(e.Message);
            System.Environment.Exit(1);
        }

        // now we change the parameter values to see if the parameter fitting
        // can really find the original values
        random = rand_gen.NextDouble() * 10;
        CReaction reaction = dataModel.getModel().getReaction(0);

        // we know that it is an irreversible mass action, so there is one
        // parameter
        Debug.Assert(reaction.getParameters().size() == 1);
        Debug.Assert(reaction.isLocalParameter(0));
        // the parameter of a irreversible mass action is called k1
        reaction.setParameterValue("k1", random);

        reaction = dataModel.getModel().getReaction(1);
        // we know that it is an irreversible mass action, so there is one
        // parameter
        Debug.Assert(reaction.getParameters().size() == 1);
        Debug.Assert(reaction.isLocalParameter(0));
        reaction.setParameterValue("k1", random);

        CFitTask fitTask = (CFitTask)dataModel.addTask(CTaskEnum.Task_parameterFitting);

        Debug.Assert(fitTask != null);
        // the method in a fit task is an instance of COptMethod or a subclass of
        // it.
        COptMethod fitMethod = (COptMethod)fitTask.getMethod();

        Debug.Assert(fitMethod != null);
        // the object must be an instance of COptMethod or a subclass thereof
        // (CFitMethod)
        CFitProblem fitProblem = (CFitProblem)fitTask.getProblem();

        Debug.Assert(fitProblem != null);

        CExperimentSet experimentSet = (CExperimentSet)fitProblem.getParameter("Experiment Set");

        Debug.Assert(experimentSet != null);

        // first experiment (we only have one here)
        CExperiment experiment = new CExperiment(dataModel);

        Debug.Assert(experiment != null);
        // tell COPASI where to find the data
        // reading data from string is not possible with the current C++ API
        experiment.setFileName("fakedata_example6.txt");
        // we have to tell COPASI that the data for the experiment is a komma
        // separated list (the default is TAB separated)
        experiment.setSeparator(",");
        // the data start in row 1 and goes to row 4001
        experiment.setFirstRow(1);
        Debug.Assert(experiment.getFirstRow() == 1);
        experiment.setLastRow(4001);
        Debug.Assert(experiment.getLastRow() == 4001);
        experiment.setHeaderRow(1);
        Debug.Assert(experiment.getHeaderRow() == 1);
        experiment.setExperimentType(CTaskEnum.Task_timeCourse);
        Debug.Assert(experiment.getExperimentType() == CTaskEnum.Task_timeCourse);
        experiment.setNumColumns(4);
        Debug.Assert(experiment.getNumColumns() == 4);
        CExperimentObjectMap objectMap = experiment.getObjectMap();

        Debug.Assert(objectMap != null);
        result = objectMap.setNumCols(4);
        Debug.Assert(result == true);
        result = objectMap.setRole(0, CExperiment.time);
        Debug.Assert(result == true);
        Debug.Assert(objectMap.getRole(0) == CExperiment.time);

        CModel model = dataModel.getModel();

        Debug.Assert(model != null);
        CDataObject timeReference = model.getValueReference();

        Debug.Assert(timeReference != null);
        objectMap.setObjectCN(0, timeReference.getCN().getString());

        // now we tell COPASI which column contain the concentrations of
        // metabolites and belong to dependent variables
        objectMap.setRole(1, CExperiment.dependent);
        CMetab metab = metabVector[0];

        Debug.Assert(metab != null);
        CDataObject particleReference = metab.getConcentrationReference();

        Debug.Assert(particleReference != null);
        objectMap.setObjectCN(1, particleReference.getCN().getString());

        objectMap.setRole(2, CExperiment.dependent);
        metab = metabVector[1];
        Debug.Assert(metab != null);
        particleReference = metab.getConcentrationReference();
        Debug.Assert(particleReference != null);
        objectMap.setObjectCN(2, particleReference.getCN().getString());

        objectMap.setRole(3, CExperiment.dependent);
        metab = metabVector[2];
        Debug.Assert(metab != null);
        particleReference = metab.getConcentrationReference();
        Debug.Assert(particleReference != null);
        objectMap.setObjectCN(3, particleReference.getCN().getString());

        experimentSet.addExperiment(experiment);
        Debug.Assert(experimentSet.getExperimentCount() == 1);
        // addExperiment makes a copy, so we need to get the added experiment
        // again
        experiment = experimentSet.getExperiment(0);
        Debug.Assert(experiment != null);

        // now we have to define the two fit items for the two local parameters
        // of the two reactions
        reaction = model.getReaction(0);
        Debug.Assert(reaction != null);
        Debug.Assert(reaction.isLocalParameter(0) == true);
        CCopasiParameter parameter = reaction.getParameters().getParameter(0);

        Debug.Assert(parameter != null);

        // define a CFitItem
        CDataObject parameterReference = parameter.getValueReference();

        Debug.Assert(parameterReference != null);
        CFitItem fitItem1 = new CFitItem(dataModel);

        Debug.Assert(fitItem1 != null);
        fitItem1.setObjectCN(parameterReference.getCN());
        fitItem1.setStartValue(4.0);
        fitItem1.setLowerBound(new CCommonName("0.00001"));
        fitItem1.setUpperBound(new CCommonName("10"));
        // add the fit item to the correct parameter group
        CCopasiParameterGroup optimizationItemGroup = (CCopasiParameterGroup)fitProblem.getParameter("OptimizationItemList");

        Debug.Assert(optimizationItemGroup != null);
        optimizationItemGroup.addParameter(fitItem1);

        reaction = model.getReaction(1);
        Debug.Assert(reaction != null);
        Debug.Assert(reaction.isLocalParameter(0) == true);
        parameter = reaction.getParameters().getParameter(0);
        Debug.Assert(parameter != null);

        // define a CFitItem
        parameterReference = parameter.getValueReference();
        Debug.Assert(parameterReference != null);
        CFitItem fitItem2 = new CFitItem(dataModel);

        Debug.Assert(fitItem2 != null);
        fitItem2.setObjectCN(parameterReference.getCN());
        fitItem2.setStartValue(4.0);
        fitItem2.setLowerBound(new CCommonName("0.00001"));
        fitItem2.setUpperBound(new CCommonName("10"));
        // add the fit item to the correct parameter group
        optimizationItemGroup.addParameter(fitItem2);

        result = true;
        try
        {
            // running the task for this example will probably take some time
            System.Console.WriteLine("This can take some time...");
            result = fitTask.processWithOutputFlags(true, (int)CCopasiTask.ONLY_TIME_SERIES);
        }
        catch
        {
            System.Console.Error.WriteLine("Error. Parameter fitting failed.");
            String lastErrors = fitTask.getProcessError();
            // check if there are additional error messages
            if (!string.IsNullOrEmpty(lastErrors))
            {
                // print the messages in chronological order
                System.Console.Error.WriteLine(lastErrors);
            }

            System.Environment.Exit(1);
        }

        Debug.Assert(result == true);
        // assert that there are two optimization items
        Debug.Assert(fitProblem.getOptItemList().Count == 2);
        // the order should be the order in whih we added the items above
        COptItem optItem1 = fitProblem.getOptItemList()[0];
        COptItem optItem2 = fitProblem.getOptItemList()[1];

        // the actual results are stored in the fit problem
        Debug.Assert(fitProblem.getSolutionVariables().size() == 2);
        System.Console.WriteLine("value for " + optItem1.getObject().getCN().getString() + ": " + fitProblem.getSolutionVariables().get(0));
        System.Console.WriteLine("value for " + optItem2.getObject().getCN().getString() + ": " + fitProblem.getSolutionVariables().get(1));
        // depending on the noise, the fit can be quite bad, so we are a litle
        // relaxed here (we should be within 3% of the original values)
        Debug.Assert((System.Math.Abs(fitProblem.getSolutionVariables().get(0) - 0.03) / 0.03) < 3e-2);
        Debug.Assert((System.Math.Abs(fitProblem.getSolutionVariables().get(1) - 0.004) / 0.004) < 3e-2);
    }