コード例 #1
0
        CNTK.MinibatchSource create_minibatch_source(CNTK.NDShape shape, int start_index, int sample_count, string prefix, bool is_training = false, bool use_augmentations = false)
        {
            var map_filename = create_map_txt_file_if_needed(start_index, sample_count, prefix);

            var transforms = new List <CNTK.CNTKDictionary>();

            if (use_augmentations)
            {
                var randomSideTransform = CNTK.CNTKLib.ReaderCrop("RandomSide",
                                                                  new Tuple <int, int>(0, 0),
                                                                  new Tuple <float, float>(0.8f, 1.0f),
                                                                  new Tuple <float, float>(0.0f, 0.0f),
                                                                  new Tuple <float, float>(1.0f, 1.0f),
                                                                  "uniRatio");
                transforms.Add(randomSideTransform);
            }

            var scaleTransform = CNTK.CNTKLib.ReaderScale(width: shape[1], height: shape[0], channels: shape[2]);

            transforms.Add(scaleTransform);

            var imageDeserializer     = CNTK.CNTKLib.ImageDeserializer(map_filename, "labels", 2, "features", transforms);
            var minibatchSourceConfig = new CNTK.MinibatchSourceConfig(new CNTK.DictionaryVector()
            {
                imageDeserializer
            });

            if (!is_training)
            {
                minibatchSourceConfig.randomizationWindowInChunks  = 0;
                minibatchSourceConfig.randomizationWindowInSamples = 0;
            }
            return(CNTK.CNTKLib.CreateCompositeMinibatchSource(minibatchSourceConfig));
        }
コード例 #2
0
        public static CNTK.Value get_tensors(CNTK.NDShape shape, float[] src, int[] indices, int indices_begin, int indices_end, CNTK.DeviceDescriptor device)
        {
            var cpu_tensors = Util.get_minibatch_data_CPU(shape, src, indices, indices_begin, indices_end);
            var result      = CNTK.Value.CreateBatch(shape, cpu_tensors, device, true);

            return(result);
        }
コード例 #3
0
 /// <summary>
 /// Add a pooling layer to a neural network.
 /// </summary>
 /// <param name="input">The neural network to expand</param>
 /// <param name="poolingType">The type of pooling to perform</param>
 /// <param name="windowShape">The shape of the pooling window</param>
 /// <param name="strides">The stride lengths</param>
 /// <returns>The neural network with the pooling layer added.</returns>
 public static CNTK.Variable Pooling(
     this CNTK.Variable input,
     CNTK.PoolingType poolingType,
     CNTK.NDShape windowShape,
     int[] strides)
 {
     return(CNTK.CNTKLib.Pooling(input, poolingType, windowShape, strides));
 }
コード例 #4
0
        static float[] get_minibatch_data_CPU(CNTK.NDShape shape, float[] src, int indices_begin, int indices_end)
        {
            // it would be nice if we avoid the copy here
            var result = new float[indices_end - indices_begin];

            Array.Copy(src, indices_begin, result, 0, result.Length);
            return(result);
        }
コード例 #5
0
        static float[] get_minibatch_data_CPU(CNTK.NDShape shape, float[] src, int[] indices, int indices_begin, int indices_end)
        {
            var num_indices = indices_end - indices_begin;
            var row_length  = shape.TotalSize;
            var result      = new float[num_indices];
            var row_index   = 0;

            for (var index = indices_begin; index != indices_end; index++)
            {
                result[row_index++] = src[indices[index]];
            }
            return(result);
        }
コード例 #6
0
        static CNTK.NDArrayView[] get_minibatch_data_CPU(CNTK.NDShape shape, float[][] src, int indices_begin, int indices_end)
        {
            var num_indices = indices_end - indices_begin;
            var result      = new CNTK.NDArrayView[num_indices];

            var row_index = 0;

            for (var index = indices_begin; index != indices_end; index++)
            {
                var dataBuffer  = src[index];
                var ndArrayView = new CNTK.NDArrayView(shape, dataBuffer, CNTK.DeviceDescriptor.CPUDevice, true);
                result[row_index++] = ndArrayView;
            }
            return(result);
        }
コード例 #7
0
ファイル: NetUtil.cs プロジェクト: salujagurdeep/DLR
 /// <summary>
 /// Reshape the current network tensor to the new shape.
 /// </summary>
 /// <param name="input">The neural network</param>
 /// <param name="newShape">The new shape to reshape the tensor to</param>
 /// <returns>The neural network with the reshape layer added</returns>
 public static CNTK.Variable Reshape(
     this CNTK.Variable input,
     CNTK.NDShape newShape)
 {
     return(CNTK.CNTKLib.Reshape(input, newShape));
 }