private static void Main(string[] args) { Mat src = new Mat("data/tsukuba_left.png", LoadMode.GrayScale); Mat dst20 = new Mat(); Mat dst40 = new Mat(); Mat dst44 = new Mat(); using (CLAHE clahe = Cv2.CreateCLAHE()) { clahe.ClipLimit = 20; clahe.Apply(src, dst20); clahe.ClipLimit = 40; clahe.Apply(src, dst40); clahe.TilesGridSize = new Size(4, 4); clahe.Apply(src, dst44); } Window.ShowImages(src, dst20, dst40, dst44); /*var img1 = new IplImage("data/lenna.png", LoadMode.Color); * var img2 = new IplImage("data/match2.png", LoadMode.Color); * Surf(img1, img2);*/ //Mat[] mats = StitchingPreprocess(400, 400, 10); //Stitching(mats); //Track(); //Run(); }
private static void Clahe() { Mat src = new Mat("data/tsukuba_left.png", ImreadModes.GrayScale); Mat dst20 = new Mat(); Mat dst40 = new Mat(); Mat dst44 = new Mat(); using (CLAHE clahe = Cv2.CreateCLAHE()) { clahe.ClipLimit = 20; clahe.Apply(src, dst20); clahe.ClipLimit = 40; clahe.Apply(src, dst40); clahe.TilesGridSize = new Size(4, 4); clahe.Apply(src, dst44); } Window.ShowImages(src, dst20, dst40, dst44); }
public void Run() { Mat src = new Mat(FilePath.Image.TsukubaLeft, ImreadModes.Grayscale); Mat dst1 = new Mat(); Mat dst2 = new Mat(); Mat dst3 = new Mat(); using (CLAHE clahe = Cv2.CreateCLAHE()) { clahe.ClipLimit = 20; clahe.Apply(src, dst1); clahe.ClipLimit = 40; clahe.Apply(src, dst2); clahe.TilesGridSize = new Size(4, 4); clahe.Apply(src, dst3); } Window.ShowImages( new[] { src, dst1, dst2, dst3 }, new[] { "src", "dst clip20", "dst clip40", "dst tile4x4" }); }
//5. 图像增强方法2(输入图像为灰度图像)(通过clahe函数进行自适应直方图均衡化对其进行图像增强) public static Mat ImageEnhancementMethod2(Mat inMat, Mat outMat) { //Mat mat5 = new Mat(); using (CLAHE clahe = Cv2.CreateCLAHE()) { //clahe.ClipLimit = 20; clahe.TilesGridSize = new Size(4, 4); clahe.Apply(inMat, outMat); //clahe.ClipLimit = 40; //clahe.Apply(src, dst2); //clahe.TilesGridSize = new Size(4, 4); //clahe.Apply(src, dst3); } return(outMat); }
public static Mat EscalaGrisesEqualizada(Mat imagen) { /* bgr a grayscale */ Mat imagenGris = new Mat(); Cv2.CvtColor(imagen, imagenGris, ColorConversionCodes.BGR2GRAY); /* ecualización por histograma */ Mat imagenGrisEqualizada = new Mat(); CLAHE ecualizadorHistograma = Cv2.CreateCLAHE(5, new Size(3, 3)); ecualizadorHistograma.Apply(imagenGris, imagenGrisEqualizada); /* liberar memoria */ imagenGris.Release(); return(imagenGrisEqualizada); }
public static void NormalizeRGB(this Mat self, Mat output, double clip) { if (self.Channel != 3) { throw new NotSupportedException("Channel sould be RGB"); } ConvertColor(self, ColorConversionCodes.BGR2Lab); Mat[] spl = Split(self); CLAHE c = CLAHE.Create(clip, new OpenCvSharp.Size(8, 8)); c.Apply(spl[0], spl[0]); Merge(self, spl); ConvertColor(self, ColorConversionCodes.Lab2BGR); }
public void cuda_CLAHE() { Mat src = Image("lenna.png", ImreadModes.Grayscale); Size size = src.Size(); Cuda.CLAHE clahe = Cuda.CLAHE.create(20.0); CLAHE clahe_gold = CLAHE.Create(20.0); using (GpuMat g_src = new GpuMat(size, src.Type())) using (GpuMat dst = new GpuMat()) { g_src.Upload(src); clahe.Apply(g_src, dst); Mat dst_gold = new Mat(); clahe_gold.Apply(src, dst_gold); ImageEquals(dst_gold, dst, 1.0); ShowImagesWhenDebugMode(src, dst); } }
private Mat Recipe(string path, double value, string option) { if (path != null) { Mat orgMat = new Mat(path); Mat previewMat = new Mat(); #region //Algorithm Mat matrix = new Mat(); switch (option) { case "Contrast": Cv2.AddWeighted(orgMat, value, orgMat, 0, 0, previewMat); break; //AddWeighted 함수를 이용해서 gamma 인자를 통해 가중치의 합에 추가적인 덧셈을 한꺼번에 수행 할 수 있다. //computes weighted sum of two arrays (dst = alpha*src1 + beta*src2 + gamma) //http://suyeongpark.me/archives/tag/opencv/page/2 case "Brightness": Cv2.Add(orgMat, value, previewMat); break; //Add 함수를 이용해서 영상의 덧셈을 수행 한다. //Add 연산에서는 자동으로 포화 연산을 수행한다. //http://suyeongpark.me/archives/tag/opencv/page/2 case "Blur": Cv2.GaussianBlur(orgMat, previewMat, new OpenCvSharp.Size(9, 9), value, 1, BorderTypes.Default); //GaussianBlur break; //영상이나 이미지를 흐림 효과를 주어 번지게 하기 위해 사용합니다. 해당 픽셀의 주변값들과 비교하고 계산하여 픽셀들의 색상 값을 재조정합니다. //각 필세마다 주변의 픽셀들의 값을 비교하고 계산하여 픽섹들의 값을 재조정 하게 됩니다. 단순 블러의 경우 파란 사격형 안에 평균값으로 //붉은색 값을 재종하게 되고, 모든 픽셀들에 대하여 적용을 하게 된다. //https://076923.github.io/posts/C-opencv-13/ case "Rotation": matrix = Cv2.GetRotationMatrix2D(new Point2f(orgMat.Width / 2, orgMat.Height / 2), value, 1.0); // 2x3 회전 행렬 생성 함수 GetRotationMatrix2D Cv2.WarpAffine(orgMat, previewMat, matrix, new OpenCvSharp.Size(orgMat.Width, orgMat.Height), InterpolationFlags.Linear, BorderTypes.Replicate); break; //WarpAffine(원본 배열, 결과 배열, 행렬, 결과 배열의 크기) 결과 배열의 크기를 설정하는 이유는 회전 후, 원본 배열의 이미지 크기와 다를 수 있기 때문이다. //Interpolation.Linear은 영상이나 이미지 보간을 위해 보편적으로 사용되는 보간법이다. //BoderTypes.Replicate 여백을 검은색으로 채우면서 회전이 되더라도 zeropadding 된다. //https://076923.github.io/posts/C-opencv-6/ case "Rotation90": matrix = Cv2.GetRotationMatrix2D(new Point2f(orgMat.Width / 2, orgMat.Height / 2), 90, 1.0); Cv2.WarpAffine(orgMat, previewMat, matrix, new OpenCvSharp.Size(orgMat.Width, orgMat.Height), InterpolationFlags.Linear, BorderTypes.Reflect); break; //WarpAffine(원본 배열, 결과 배열, 행렬, 결과 배열의 크기) 결과 배열의 크기를 설정하는 이유는 회전 후, 원본 배열의 이미지 크기와 다를 수 있기 때문이다. //Interpolation.Linear은 영상이나 이미지 보간을 위해 보편적으로 사용되는 보간법이다. //BoderTypes.Replicate 여백을 검은색으로 채우면서 회전이 되더라도 zeropadding 된다. //https://076923.github.io/posts/C-opencv-6/ case "Horizontal Flip": Cv2.Flip(orgMat, previewMat, FlipMode.Y); break; //Flip(원본 이미지, 결과 이미지, 대칭 축 색상 공간을 변환), 대칭 축(FlipMode)를 사용하여 대칭 진행 //https://076923.github.io/posts/C-opencv-5/ case "Vertical Flip": Cv2.Flip(orgMat, previewMat, FlipMode.X); break; //Flip(원본 이미지, 결과 이미지, 대칭 축 색상 공간을 변환), 대칭 축(FlipMode)를 사용하여 대칭 진행 //https://076923.github.io/posts/C-opencv-5/ case "Noise": matrix = new Mat(orgMat.Size(), MatType.CV_8UC3); Cv2.Randn(matrix, Scalar.All(0), Scalar.All(value)); Cv2.AddWeighted(orgMat, 1, matrix, 1, 0, previewMat); break; //Randn 정규 분포를 나타내는 이미지를 랜덤하게 생성하는 방법 //AddWeighted 두 이미지를 가중치를 설정하여 합치면서 진행 // case "Zoom In": //#1. Center만 확대 double width_param = (int)(0.8 * orgMat.Width); // 0.8이 배율 orgMat.Width이 원본이미지의 사이즈 // 나중에 0.8만 80%형식으로 바꿔서 파라미터로 빼야됨 double height_param = (int)(0.8 * orgMat.Height); // 0.8이 배율 orgMat.Height 원본이미지의 사이즈 // int startX = orgMat.Width - (int)width_param; // 이미지를 Crop해올 좌상단 위치 지정하는값 // 원본사이즈 - 배율로 감소한 사이즈 int startY = orgMat.Height - (int)height_param; // Mat tempMat = new Mat(orgMat, new OpenCvSharp.Rect(startX, startY, (int)width_param - (int)(0.2 * orgMat.Width), (int)height_param - (int)(0.2 * orgMat.Height))); //중간과정 mat이고 Rect안에 x,y,width,height 값 지정해주는거 //예외처리 범위 밖으로 벗어나는경우 shift시키거나 , 제로페딩을 시키거나 //예외처리 Cv2.Resize(tempMat, previewMat, new OpenCvSharp.Size(orgMat.Width, orgMat.Height), (double)((double)orgMat.Width / (double)(width_param - (int)(0.2 * orgMat.Width))), (double)((double)orgMat.Height / ((double)(height_param - (int)(0.2 * orgMat.Height)))), InterpolationFlags.Cubic); // (double) ( (double)orgMat.Width / (double)width_param) // 형변환 원본이미지 형변환 / 타겟이미지 배율 == 타겟이미지가 원본이미지 대비 몇배인가? 의 수식임 // (double) ( (double)orgMat.Height / (double)height_param) break; case "Sharpen": float filterBase = -1f; float filterCenter = filterBase * -9; float[] data = new float[9] { filterBase, filterBase, filterBase, filterBase, filterCenter, filterBase, filterBase, filterBase, filterBase }; Mat kernel = new Mat(3, 3, MatType.CV_32F, data); Cv2.Filter2D(orgMat, previewMat, orgMat.Type(), kernel); break; // // // // Contrast Limited Adapative Histogram Equalization case "CLAHE": CLAHE test = Cv2.CreateCLAHE(); test.SetClipLimit(10.0f); if (value < 1) { value = 1; } test.SetTilesGridSize(new OpenCvSharp.Size(value, value)); Mat normalized = new Mat(); Mat temp = new Mat(); Cv2.CvtColor(orgMat, orgMat, ColorConversionCodes.RGB2HSV); var splitedMat = orgMat.Split(); test.Apply(splitedMat[2], splitedMat[2]); Cv2.Merge(splitedMat, previewMat); Cv2.CvtColor(previewMat, previewMat, ColorConversionCodes.HSV2RGB); break; // // // default: break; } matrix.Dispose(); //이미지의 메모리 할당을 해제 합니다. orgMat.Dispose(); //이미지의 메모리 할당을 해제 합니다. return(previewMat); #endregion } return(null); }
public static double?GetRotationAngle(string inputFileFolderPath, string inputFileName, bool showMessageBoxes, ImageBox iboxRaw, ImageBox iboxProcessed, out double msecElapsed) { double?rotationAngle = null; msecElapsed = 0; // Hough algo does a bad job detecting horizontal lines. So we rotate the image by a set amount before running the Hough. double houghRotationOffsetAngle = 25.0; try { Stopwatch stopWatch = new Stopwatch(); stopWatch.Start(); if (iboxProcessed != null) { iboxProcessed.Image = null; iboxProcessed.Refresh(); } Mat rotated = new Mat(); Mat src = new Mat(inputFileFolderPath + inputFileName, ImreadModes.Grayscale); if (showMessageBoxes && iboxRaw != null) { iboxRaw.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src); } // Not needed if we read as grayscale to start with. //Mat src8UC1 = new Mat(); //src.ConvertTo(src8UC1, MatType.CV_8UC1); // I'm not sure why we do the gauss - It seems like everyone does it, it's cheap, so we do it. ~Ed Mat gauss = new Mat(); Cv2.GaussianBlur(src, gauss, new OpenCvSharp.Size(3, 3), 2, 2); LogEvent("gauss", showMessageBoxes, gauss, iboxProcessed); // An attempt to get the contrast across the image to be somewhat uniform. CLAHE claheFilter = Cv2.CreateCLAHE(4, new OpenCvSharp.Size(10, 10)); Mat clahe = new Mat(); claheFilter.Apply(gauss, clahe); LogEvent("clahe", showMessageBoxes, clahe, iboxProcessed); // An attempt to get the contrast across the image to be somewhat uniform. Mat hist = new Mat(); Cv2.EqualizeHist(gauss, hist); LogEvent("hist", showMessageBoxes, hist, iboxProcessed); // Grab a template from some middle part of the image. Eventually, the size and location of this // template will be specified. It is very possible we'll have to grab multiple templates, as the // location of the template may impact the accuracy of the rotation. // e.g. - if the template is an image of a damaged device (which may happen at any location), the calculated // rotation may be wrong. Testing is required. // The locations where the template matches will create an image with lines that are offset from 0/90 degrees. // This is because we can assume that the devices are orthogonal to one another, even if the image itself is // offset rotationally. Rect r1 = new Rect(new OpenCvSharp.Point(1000, 1000), new OpenCvSharp.Size(500, 300)); var roi = new Mat(clahe, r1); Mat template = new Mat(new OpenCvSharp.Size(500, 300), MatType.CV_8UC1); roi.CopyTo(template); LogEvent("template", showMessageBoxes, template, iboxProcessed); Mat templateMatch = new Mat(); Cv2.MatchTemplate(clahe, template, templateMatch, TemplateMatchModes.CCoeffNormed); LogEvent("templatematch", showMessageBoxes, templateMatch, iboxProcessed); Mat normalized = new Mat(); normalized = templateMatch.Normalize(0, 255, NormTypes.MinMax); normalized.ConvertTo(normalized, MatType.CV_8UC1); LogEvent("normalized template match", showMessageBoxes, normalized, iboxProcessed); // This winnows down the number of matches. Mat thresh = new Mat(); Cv2.Threshold(normalized, thresh, 200, 255, ThresholdTypes.Binary); LogEvent("threshold template match", showMessageBoxes, thresh, iboxProcessed); // rotate the image because hough doesn't work very well to find horizontal lines. Mat rotatedThresh = new Mat(); Cv2E.RotateDegrees(thresh, rotatedThresh, houghRotationOffsetAngle); LogEvent("rotatedThresh", showMessageBoxes, rotatedThresh, iboxProcessed); Mat erode = new Mat(); Cv2.Erode(rotatedThresh, erode, new Mat()); LogEvent("erode", showMessageBoxes, erode, iboxProcessed); LineSegmentPoint[] segHoughP = Cv2.HoughLinesP(rotatedThresh, 1, Math.PI / 1800, 2, 10, 600); Mat imageOutP = new Mat(src.Size(), MatType.CV_8UC3); // We're limiting the rotation correction to +/- 10 degrees. So we only care about hough lines that fall within 80 to 100 or 170 to 190 List <double> anglesNear90 = new List <double>(); List <double> anglesNear0 = new List <double>(); foreach (LineSegmentPoint s in segHoughP) { try { // Add lines to the image, if we're going to look at it. if (showMessageBoxes) { imageOutP.Line(s.P1, s.P2, Scalar.White, 1, LineTypes.AntiAlias, 0); } var radian = Math.Atan2((s.P1.Y - s.P2.Y), (s.P1.X - s.P2.X)); var angle = ((radian * (180 / Math.PI) + 360) % 360); // We rotated the image because the hough algo does a bad job with small horizontal lines. So we take that rotation back out here. angle += houghRotationOffsetAngle; angle -= 180; if (angle > 80 && angle < 100) { anglesNear90.Add(angle); if (showMessageBoxes) { imageOutP.Line(s.P1, s.P2, Scalar.Red, 1, LineTypes.AntiAlias, 0); } } if (angle > -10 && angle < 10) { anglesNear0.Add(angle); if (showMessageBoxes) { imageOutP.Line(s.P1, s.P2, Scalar.Orange, 1, LineTypes.AntiAlias, 0); } } } catch (Exception ex) { // there's always some infinity risk with atan, yes? Maybe. I don't want to fail on horizontal or vertical line edge cases. } } double meanAngleNear0 = 0; if (anglesNear0.Count > 0) { meanAngleNear0 = anglesNear0.Mean(); } double meanAngleNear90 = 90; if (anglesNear90.Count > 0) { meanAngleNear90 = anglesNear90.Mean(); } // Use both the vertical and horizontal to calculate the image angle with a weighted average. It might be more accurate to use median instead of mean here. rotationAngle = ((meanAngleNear0) * anglesNear0.Count + (meanAngleNear90 - 90) * anglesNear90.Count) / (anglesNear0.Count + anglesNear90.Count); LogEvent("hough lines", showMessageBoxes, imageOutP, iboxProcessed); stopWatch.Stop(); // Get the elapsed time as a TimeSpan value. Less than 400msec in debug mode via IDE. TimeSpan ts = stopWatch.Elapsed; msecElapsed = ts.TotalMilliseconds; } catch (Exception ex) { } return(rotationAngle); }
public static void MatchTranspTemplate(string sFilePath, string sTemplateFilePath, bool showMessageBoxes, ImageBox rawImageBox, ImageBox processedImageBox) { Mat src = new Mat(sFilePath, ImreadModes.Grayscale); rawImageBox.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(src); // I'm not sure why we do the gauss - It seems like everyone does it, it's cheap, so we do it. ~Ed LogEvent("gauss", showMessageBoxes); Mat gauss = new Mat(); Cv2.GaussianBlur(src, gauss, new OpenCvSharp.Size(3, 3), 2, 2); processedImageBox.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(gauss); // An attempt to get the contrast across the image to be somewhat uniform. LogEvent("clahe", showMessageBoxes); CLAHE claheFilter = Cv2.CreateCLAHE(4, new OpenCvSharp.Size(10, 10)); Mat clahe = new Mat(); claheFilter.Apply(gauss, clahe); processedImageBox.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(clahe); // Grab a template from some middle part of the image. Eventually, the size and location of this // template will be specified. It is very possible we'll have to grab multiple templates, as the // location of the template may impact the accuracy of the rotation. // e.g. - if the template is an image of a damaged device (which may happen at any location), the calculated // rotation may be wrong. Testing is required. // The locations where the template matches will create an image with lines that are offset from 0/90 degrees. // This is because we can assume that the devices are orthogonal to one another, even if the image itself is // offset rotationally. //Rect r1 = new Rect(new OpenCvSharp.Point(1000, 1000), new OpenCvSharp.Size(500, 300)); //var roi = new Mat(clahe, r1); //Mat template = new Mat(new OpenCvSharp.Size(500, 300), MatType.CV_8UC1); //roi.CopyTo(template); Mat template = new Mat(sTemplateFilePath, ImreadModes.Grayscale); processedImageBox.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(template); //LogEvent("preotsu", showMessageBoxes); //Mat preotsu = new Mat(); //Cv2.Threshold(clahe, preotsu, 240, 255, ThresholdTypes.Binary); //processedImageBox.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(preotsu); Mat templateMatch = new Mat(); // # According to http://www.devsplanet.com/question/35658323, we can only use cv2.TM_SQDIFF or cv2.TM_CCORR_NORMED for a transparent template Cv2.MatchTemplate(clahe, template, templateMatch, TemplateMatchModes.CCorrNormed); //LogEvent("template match", showMessageBoxes); // can't do this - image is 32, needs to be 8uc1 or similar to convert to bitmap. //processedImageBox.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(templateMatch); Mat converted = new Mat(); converted = templateMatch.Normalize(0, 255, NormTypes.MinMax); converted.ConvertTo(converted, MatType.CV_8UC1); LogEvent("template match converted", showMessageBoxes); processedImageBox.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(converted); // This winnows down the number of matches. LogEvent("thresh", showMessageBoxes); Mat thresh = new Mat(); Cv2.Threshold(converted, thresh, 240, 255, ThresholdTypes.Binary); processedImageBox.Image = OpenCvSharp.Extensions.BitmapConverter.ToBitmap(thresh); string matchFilename = string.Format("Matches_{0}.jpg", DateTime.Now.ToString("yyyyMMdd_hhmmss")); thresh.SaveImage(@"..\..\..\ExampleFiles\Templates\" + matchFilename); }
/// <summary> /// Analyze video frame /// </summary> private void AnalyzeVideo() { var newImage = new Mat(); var newFrame = new CFrame(); newFrame = cframe; newImage = newFrame.Frame; newImage = newImage.CvtColor(ColorConversionCodes.BGR2GRAY); Utilities.debugmessage("Clahe: " + Cv2.Mean(newImage)[0]); clhLight.SetClipLimit(2); clhLight.Apply(newImage, newImage); var st = new Stopwatch(); Utilities.debugmessage("Clahe: " + Cv2.Mean(newImage)[0]); st.Start(); List <YoloItem> items = yoloWrapper.Detect(newImage.Resize(new OpenCvSharp.Size(w, h)).ToBytes()).ToList(); var coeffW = ((float)newImage.Width / w); var coeffH = ((float)newImage.Height / h); foreach (var itm in items) { if (itm.Confidence < 0.66) { break; } if (itm.Type == "dcoup") { // Logging, Tracking TimeSpan curTime = TimeSpan.FromMilliseconds(newFrame.frameNum * frameTime); string[] _toAdd = { newFrame.frameNum.ToString(), (itm.X * coeffW).ToString(), (itm.Y * coeffH).ToString(), ((itm.X * coeffW) + (itm.Width * coeffH)).ToString(), ((itm.Y * coeffH) + (itm.Height * coeffW)).ToString(), curTime.ToString(@"hh\:mm\:ss") }; Log(_toAdd); //if (myConnection.State == System.Data.ConnectionState.Open) //{ // try // { // dataBaseLog(_toAdd); // } // catch { } //} ListViewItem item1 = new ListViewItem(newFrame.frameNum.ToString(), 0); item1.SubItems.Add((itm.X * coeffW).ToString()); item1.SubItems.Add((itm.Y * coeffH).ToString()); item1.SubItems.Add((itm.Width * coeffW + (itm.X * coeffW)).ToString()); item1.SubItems.Add((itm.Height * coeffH + (itm.Y * coeffH)).ToString()); item1.SubItems.Add(curTime.ToString(@"hh\:mm\:ss")); window.listView1.BeginInvoke(new Action(() => { window.listView1.Items.AddRange(new ListViewItem[] { item1 }); })); // Tracking algorithm // Speed limit ~80 KM/h (if lenght between coups is 12-15 meters) if (((newFrame.frameNum * frameTime) > (checkTime + 650)) && Math.Abs((float)masTrackDcoup * coeffW - (float)itm.X * coeffW) < 30) { checkTime = (newFrame.frameNum * frameTime); masTrackDcoup = itm.X; } else if (((newFrame.frameNum * frameTime) > (checkTime + 650))) { CoupCount++; checkTime = (newFrame.frameNum * frameTime); masTrackDcoup = itm.X; } else if (CoupCount == 0) { CoupCount++; checkTime = (newFrame.frameNum * frameTime); masTrackDcoup = itm.X; } else { checkTime = (newFrame.frameNum * frameTime); masTrackDcoup = itm.X; } } } st.Stop(); window.toolStripTimer.Text = "Elapsed time: " + st.ElapsedMilliseconds + " ms"; window.toolStripCounter.Text = "Count: " + CoupCount; // Drawing new frame in picBox window.picBox.BeginInvoke(new Action(() => { window.picBox.ImageIpl = newImage.Resize(new OpenCvSharp.Size(window.picBox.Width, window.picBox.Height)); window.picBox.setRect(items); })); if (cframe.frameNum + 1 > frameCnt) { PLAY_FLAG = false; window.Invoke(new Action(() => { window.pauseButton.Enabled = false; window.btn_Detect.Enabled = true; })); } analyzeStarted = false; }