/// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string testSetFile     = string.Empty;
            string modelFile       = string.Empty;
            string predictionsFile = string.Empty;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--test-set", "FILE", "File with test data", v => testSetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--model", "FILE", "File with a trained binary Bayes point machine model", v => modelFile    = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--predictions", "FILE", "File to store predictions for the test data", v => predictionsFile = v, CommandLineParameterType.Required);
            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            var testSet = ClassifierPersistenceUtils.LoadLabeledFeatureValues(testSetFile);

            BayesPointMachineClassifierModuleUtilities.WriteDataSetInfo(testSet);

            var classifier =
                BayesPointMachineClassifier.LoadBinaryClassifier <IList <LabeledFeatureValues>, LabeledFeatureValues, IList <LabelDistribution>, string, IDictionary <string, double> >(modelFile);

            // Predict labels
            var predictions = classifier.PredictDistribution(testSet);

            // Write labels to file
            ClassifierPersistenceUtils.SaveLabelDistributions(predictionsFile, predictions);

            return(true);
        }
コード例 #2
0
    public override void Evaluate(
        string inputModelFileName,
        string reportFileName,
        string positiveClassLabel,
        string groundTruthFileName,
        string predictionsFileName,
        string weightsFileName,
        string calibrationCurveFileName,
        string precisionRecallCurveFileName,
        string rocCurveFileName)
    {
        IBayesPointMachineClassifier <
            IList <Vector>, int, IList <string>, string, IDictionary <string, double>,
            BayesPointMachineClassifierTrainingSettings,
            BinaryBayesPointMachineClassifierPredictionSettings <string> > classifier = null;

        // Validate
        _validate.Evaluate(
            inputModelFileName: inputModelFileName,
            reportFileName: reportFileName,
            groundTruthFileName: groundTruthFileName,
            predictionsFileName: predictionsFileName,
            weightsFileName: weightsFileName,
            calibrationCurveFileName: calibrationCurveFileName,
            precisionRecallCurveFileName: precisionRecallCurveFileName,
            rocCurveFileName: rocCurveFileName);

        // Load model
        if (string.IsNullOrEmpty(inputModelFileName))
        {
            classifier =
                BayesPointMachineClassifier.LoadBinaryClassifier <
                    IList <Vector>, int, IList <string>, string, IDictionary <string, double> >
                    (inputModelFileName);
        }
        else
        {
            classifier = _classifier;
        }

        EvaluationReportsMapped evaluationReports = new EvaluationReportsMapped(
            classifier,
            _evaluator,
            _x,
            _y,
            _yPredicDistrib,
            _yPredicLabel,
            reportFileName,
            positiveClassLabel,
            groundTruthFileName,
            predictionsFileName,
            weightsFileName,
            calibrationCurveFileName,
            precisionRecallCurveFileName,
            rocCurveFileName);
    }
コード例 #3
0
    public override IDictionary <string, double> PredictInstance(
        string inputModelFileName,
        DistributionName distributionName,
        InferenceAlgorithm inferenceEngineAlgorithm,
        int instance,
        double noise)
    {
        TraceListeners.Log(TraceEventType.Warning, 0,
                           "Advanced setting will not be used: " +
                           "distributionName, inferenceEngineAlgorithm  & noise.", false, true);

        // Validate
        _validate.PredictInstance(
            inputModelFileName: inputModelFileName,
            instance: instance,
            numObservations: _numObservations);

        IBayesPointMachineClassifier <
            IList <Vector>, int, IList <string>, string, IDictionary <string, double>,
            BayesPointMachineClassifierTrainingSettings,
            BinaryBayesPointMachineClassifierPredictionSettings <string> > classifier = null;

        // Load model
        if (string.IsNullOrEmpty(inputModelFileName))
        {
            classifier =
                BayesPointMachineClassifier.LoadBinaryClassifier <
                    IList <Vector>, int, IList <string>, string, IDictionary <string, double> >
                    (inputModelFileName);
        }
        else
        {
            classifier = _classifier;
        }

        IDictionary <string, double> yPredicted =
            classifier.PredictDistribution(instance, _x);

        // string yPredicLabel = classifier.Predict(instance, _x);
        return(yPredicted);
    }
コード例 #4
0
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string modelFile   = string.Empty;
            string samplesFile = string.Empty;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--model", "FILE", "File with a trained binary Bayes point machine model", v => modelFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--samples", "FILE", "File to store samples of the weights", v => samplesFile             = v, CommandLineParameterType.Required);
            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            var classifier =
                BayesPointMachineClassifier.LoadBinaryClassifier <IList <LabeledFeatureValues>, LabeledFeatureValues, IList <LabelDistribution>, string, IDictionary <string, double> >(modelFile);

            BayesPointMachineClassifierModuleUtilities.SampleWeights(classifier, samplesFile);

            return(true);
        }
コード例 #5
0
    public override void TrainIncremental(
        string inputModelFileName,
        string outputModelFileName,
        int iterationCount,
        bool computeModelEvidence,
        int batchCount,
        DistributionName distributionName,
        InferenceAlgorithm inferenceEngineAlgorithm,
        double noise)
    {
        TraceListeners.Log(TraceEventType.Warning, 0,
                           "Advanced setting will not be used: " +
                           "distributionName, inferenceEngineAlgorithm & noise.", false, true);

        // Validate
        _validate.TrainIncremental(
            inputModelFileName: inputModelFileName,
            outputModelFileName: outputModelFileName,
            iterationCount: iterationCount,
            batchCount: batchCount);

        // Load model
        IBayesPointMachineClassifier <
            IList <Vector>, int, IList <string>, string, IDictionary <string, double>,
            BayesPointMachineClassifierTrainingSettings,
            BinaryBayesPointMachineClassifierPredictionSettings <string> > classifier =
            BayesPointMachineClassifier.LoadBinaryClassifier <
                IList <Vector>, int, IList <string>, string, IDictionary <string, double> >
                (inputModelFileName);

        // Set settings
        classifier.Settings.Training.ComputeModelEvidence = computeModelEvidence;
        classifier.Settings.Training.IterationCount       = iterationCount;
        classifier.Settings.Training.BatchCount           = batchCount;

        // train
        classifier.TrainIncremental(_x, _y);
        classifier.Save(outputModelFileName);
    }
コード例 #6
0
    public override void Predict(
        string inputModelFileName,
        DistributionName distributionName,
        InferenceAlgorithm inferenceEngineAlgorithm,
        double noise)
    {
        TraceListeners.Log(TraceEventType.Warning, 0,
                           "Advanced setting will not be used: " +
                           "distributionName, inferenceEngineAlgorithm & noise.", false, true);

        // Validate
        _validate.Predict(inputModelFileName);

        // Define the classifier
        IBayesPointMachineClassifier <
            IList <Vector>, int, IList <string>, string, IDictionary <string, double>,
            BayesPointMachineClassifierTrainingSettings,
            BinaryBayesPointMachineClassifierPredictionSettings <string> > classifier = null;

        // Load model
        if (string.IsNullOrEmpty(inputModelFileName))
        {
            classifier =
                BayesPointMachineClassifier.LoadBinaryClassifier <
                    IList <Vector>, int, IList <string>, string, IDictionary <string, double> >
                    (inputModelFileName);
        }
        else
        {
            classifier = _classifier;
        }

        _validate.ValidatePredict(_x, _x);
        _yPredicDistrib = classifier.PredictDistribution(_x);
        _yPredicLabel   = classifier.Predict(_x);
    }
        /// <summary>
        /// Runs the module.
        /// </summary>
        /// <param name="args">The command line arguments for the module.</param>
        /// <param name="usagePrefix">The prefix to print before the usage string.</param>
        /// <returns>True if the run was successful, false otherwise.</returns>
        public override bool Run(string[] args, string usagePrefix)
        {
            string trainingSetFile = string.Empty;
            string inputModelFile  = string.Empty;
            string outputModelFile = string.Empty;
            int    iterationCount  = BayesPointMachineClassifierTrainingSettings.IterationCountDefault;
            int    batchCount      = BayesPointMachineClassifierTrainingSettings.BatchCountDefault;

            var parser = new CommandLineParser();

            parser.RegisterParameterHandler("--training-set", "FILE", "File with training data", v => trainingSetFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--input-model", "FILE", "File with the trained binary Bayes point machine model", v => inputModelFile = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--model", "FILE", "File to store the incrementally trained binary Bayes point machine model", v => outputModelFile        = v, CommandLineParameterType.Required);
            parser.RegisterParameterHandler("--iterations", "NUM", "Number of training algorithm iterations (defaults to " + iterationCount + ")", v => iterationCount = v, CommandLineParameterType.Optional);
            parser.RegisterParameterHandler("--batches", "NUM", "Number of batches to split the training data into (defaults to " + batchCount + ")", v => batchCount  = v, CommandLineParameterType.Optional);

            if (!parser.TryParse(args, usagePrefix))
            {
                return(false);
            }

            var trainingSet = ClassifierPersistenceUtils.LoadLabeledFeatureValues(trainingSetFile);

            BayesPointMachineClassifierModuleUtilities.WriteDataSetInfo(trainingSet);

            var classifier = BayesPointMachineClassifier.LoadBinaryClassifier <IList <LabeledFeatureValues>, LabeledFeatureValues, IList <LabelDistribution>, string, IDictionary <string, double> >(inputModelFile);

            classifier.Settings.Training.IterationCount = iterationCount;
            classifier.Settings.Training.BatchCount     = batchCount;

            classifier.TrainIncremental(trainingSet);

            classifier.Save(outputModelFile);

            return(true);
        }