public void FVEncryptSquareDecryptNET() { var parms = new EncryptionParameters(MemoryPoolHandle.AcquireNew()); parms.SetDecompositionBitCount(4); parms.SetNoiseStandardDeviation(3.19); parms.SetNoiseMaxDeviation(35.06); var coeffModulus = new BigUInt(48); coeffModulus.Set("FFFFFFFFC001"); parms.SetCoeffModulus(coeffModulus); var plainModulus = new BigUInt(7); plainModulus.Set(1 << 6); parms.SetPlainModulus(plainModulus); var polyModulus = new BigPoly(65, 1); polyModulus[0].Set(1); polyModulus[64].Set(1); parms.SetPolyModulus(polyModulus); parms.Validate(); var keygen = new KeyGenerator(parms, MemoryPoolHandle.AcquireNew()); keygen.Generate(); var encoder = new BalancedEncoder(parms.PlainModulus, MemoryPoolHandle.AcquireNew()); var encryptor = new Encryptor(parms, keygen.PublicKey, MemoryPoolHandle.AcquireNew()); var evaluator = new Evaluator(parms, MemoryPoolHandle.AcquireNew()); var decryptor = new Decryptor(parms, keygen.SecretKey, MemoryPoolHandle.AcquireNew()); var encrypted1 = encryptor.Encrypt(encoder.Encode(1)); var product = evaluator.Square(encrypted1); Assert.AreEqual(1UL, encoder.DecodeUInt64(decryptor.Decrypt(product))); encrypted1 = encryptor.Encrypt(encoder.Encode(0)); product = evaluator.Square(encrypted1); Assert.AreEqual(0UL, encoder.DecodeUInt64(decryptor.Decrypt(product))); encrypted1 = encryptor.Encrypt(encoder.Encode(-5)); product = evaluator.Square(encrypted1); Assert.AreEqual(25UL, encoder.DecodeUInt64(decryptor.Decrypt(product))); encrypted1 = encryptor.Encrypt(encoder.Encode(-1)); product = evaluator.Square(encrypted1); Assert.AreEqual(1UL, encoder.DecodeUInt64(decryptor.Decrypt(product))); encrypted1 = encryptor.Encrypt(encoder.Encode(123)); product = evaluator.Square(encrypted1); Assert.AreEqual(15129UL, encoder.DecodeUInt64(decryptor.Decrypt(product))); }
public void BalancedEncodeDecodeUInt64NET() { var modulus = new BigUInt("10000"); var encoder = new BalancedEncoder(modulus, 3); var poly = encoder.Encode(0UL); Assert.AreEqual(0, poly.GetSignificantCoeffCount()); Assert.IsTrue(poly.IsZero); Assert.AreEqual(0UL, encoder.DecodeUInt64(poly)); var poly1 = encoder.Encode(1UL); Assert.AreEqual(1, poly1.GetSignificantCoeffCount()); Assert.AreEqual(modulus.BitCount, poly1.CoeffBitCount); Assert.AreEqual("1", poly1.ToString()); Assert.AreEqual(1UL, encoder.DecodeUInt64(poly1)); var poly2 = encoder.Encode(2UL); Assert.AreEqual(2, poly2.GetSignificantCoeffCount()); Assert.AreEqual(modulus.BitCount, poly2.CoeffBitCount); Assert.AreEqual("1x^1 + FFFF", poly2.ToString()); Assert.AreEqual(2UL, encoder.DecodeUInt64(poly2)); var poly3 = encoder.Encode(3UL); Assert.AreEqual(2, poly3.GetSignificantCoeffCount()); Assert.AreEqual(modulus.BitCount, poly3.CoeffBitCount); Assert.AreEqual("1x^1", poly3.ToString()); Assert.AreEqual(3UL, encoder.DecodeUInt64(poly3)); var poly4 = encoder.Encode(0x2671UL); Assert.AreEqual(9, poly4.GetSignificantCoeffCount()); Assert.AreEqual(modulus.BitCount, poly4.CoeffBitCount); for (int i = 0; i < 9; ++i) { Assert.AreEqual("1", poly4[i].ToString()); } Assert.AreEqual(0x2671UL, encoder.DecodeUInt64(poly4)); var poly5 = encoder.Encode(0xD4EBUL); Assert.AreEqual(11, poly5.GetSignificantCoeffCount()); Assert.AreEqual(modulus.BitCount, poly5.CoeffBitCount); for (int i = 0; i < 11; ++i) { if (i % 3 == 1) { Assert.AreEqual("1", poly5[i].ToString()); } else if (i % 3 == 0) { Assert.IsTrue(poly5[i].IsZero); } else { Assert.AreEqual("FFFF", poly5[i].ToString()); } } Assert.AreEqual(0xD4EBUL, encoder.DecodeUInt64(poly5)); var poly6 = new BigPoly(3, 10); poly6[0].Set(1); poly6[1].Set(500); poly6[2].Set(1023); Assert.AreEqual((1UL + 500 * 3 + 1023 * 9), encoder.DecodeUInt64(poly6)); var encoder2 = new BalancedEncoder(modulus, 7); var poly7 = new BigPoly(4, 16); poly7[0].Set(123); // 123 (*1) poly7[1].Set("FFFF"); // -1 (*7) poly7[2].Set(511); // 511 (*49) poly7[3].Set(1); // 1 (*343) Assert.AreEqual((UInt64)(123 + -1 * 7 + 511 * 49 + 1 * 343), encoder2.DecodeUInt64(poly7)); }
public void BalancedEncodeDecodeUInt64NET() { var modulus = new SmallModulus(0x10000); var encoder = new BalancedEncoder(modulus, 3, MemoryPoolHandle.New()); var poly = encoder.Encode(0UL); Assert.AreEqual(0, poly.SignificantCoeffCount()); Assert.IsTrue(poly.IsZero); Assert.AreEqual(0UL, encoder.DecodeUInt64(poly)); var poly1 = encoder.Encode(1UL); Assert.AreEqual(1, poly1.SignificantCoeffCount()); Assert.AreEqual("1", poly1.ToString()); Assert.AreEqual(1UL, encoder.DecodeUInt64(poly1)); var poly2 = encoder.Encode(2UL); Assert.AreEqual(2, poly2.SignificantCoeffCount()); Assert.AreEqual("1x^1 + FFFF", poly2.ToString()); Assert.AreEqual(2UL, encoder.DecodeUInt64(poly2)); var poly3 = encoder.Encode(3UL); Assert.AreEqual(2, poly3.SignificantCoeffCount()); Assert.AreEqual("1x^1", poly3.ToString()); Assert.AreEqual(3UL, encoder.DecodeUInt64(poly3)); var poly4 = encoder.Encode(0x2671UL); Assert.AreEqual(9, poly4.SignificantCoeffCount()); for (int i = 0; i < 9; ++i) { Assert.AreEqual(1UL, poly4[i]); } Assert.AreEqual(0x2671UL, encoder.DecodeUInt64(poly4)); var poly5 = encoder.Encode(0xD4EBUL); Assert.AreEqual(11, poly5.SignificantCoeffCount()); for (int i = 0; i < 11; ++i) { if (i % 3 == 1) { Assert.AreEqual(1UL, poly5[i]); } else if (i % 3 == 0) { Assert.IsTrue(poly5[i] == 0); } else { Assert.AreEqual(0xFFFFUL, poly5[i]); } } Assert.AreEqual(0xD4EBUL, encoder.DecodeUInt64(poly5)); var poly6 = new Plaintext(3); poly6[0] = 1; poly6[1] = 500; poly6[2] = 1023; Assert.AreEqual((1UL + 500 * 3 + 1023 * 9), encoder.DecodeUInt64(poly6)); var encoder2 = new BalancedEncoder(modulus, 7, MemoryPoolHandle.New()); var poly7 = new Plaintext(4); poly7[0] = 123; // 123 (*1) poly7[1] = 0xFFFF; // -1 (*7) poly7[2] = 511; // 511 (*49) poly7[3] = 1; // 1 (*343) Assert.AreEqual((UInt64)(123 + -1 * 7 + 511 * 49 + 1 * 343), encoder2.DecodeUInt64(poly7)); var encoder3 = new BalancedEncoder(modulus, 6, MemoryPoolHandle.New()); var poly8 = new Plaintext(4); poly8[0] = 5; poly8[1] = 4; poly8[2] = 3; poly8[3] = 2; UInt64 value = 5 + 4 * 6 + 3 * 36 + 2 * 216; Assert.AreEqual(value, encoder3.DecodeUInt64(poly8)); var encoder4 = new BalancedEncoder(modulus, 10, MemoryPoolHandle.New()); var poly9 = new Plaintext(4); poly9[0] = 1; poly9[1] = 2; poly9[2] = 3; poly9[3] = 4; value = 4321; Assert.AreEqual(value, encoder4.DecodeUInt64(poly9)); value = 1234; var poly10 = encoder2.Encode(value); Assert.AreEqual(5, poly10.SignificantCoeffCount()); Assert.IsTrue(value.Equals(encoder2.DecodeUInt64(poly10))); value = 1234; var poly11 = encoder3.Encode(value); Assert.AreEqual(5, poly11.SignificantCoeffCount()); Assert.IsTrue(value.Equals(encoder3.DecodeUInt64(poly11))); value = 1234; var poly12 = encoder4.Encode(value); Assert.AreEqual(4, poly12.SignificantCoeffCount()); Assert.IsTrue(value.Equals(encoder4.DecodeUInt64(poly12))); }
public void FVEncryptDecryptNET() { var parms = new EncryptionParameters(); var plain_modulus = new SmallModulus(1 << 6); parms.NoiseStandardDeviation = 3.19; parms.PlainModulus = plain_modulus; { parms.PolyModulus = "1x^64 + 1"; parms.CoeffModulus = new List <SmallModulus> { DefaultParams.SmallMods60Bit(0) }; var context = new SEALContext(parms); var keygen = new KeyGenerator(context); var encoder = new BalancedEncoder(plain_modulus); var encryptor = new Encryptor(context, keygen.PublicKey); var decryptor = new Decryptor(context, keygen.SecretKey); var encrypted = new Ciphertext(); var plain = new Plaintext(); encryptor.Encrypt(encoder.Encode(0x12345678), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x12345678UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(1), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(1UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(2), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(2UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFD), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFDUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFE), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFEUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFF), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFFUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(314159265), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(314159265UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); } { parms.PolyModulus = "1x^128 + 1"; parms.CoeffModulus = new List <SmallModulus> { DefaultParams.SmallMods40Bit(0), DefaultParams.SmallMods40Bit(1) }; var context = new SEALContext(parms); var keygen = new KeyGenerator(context); var encoder = new BalancedEncoder(plain_modulus); var encryptor = new Encryptor(context, keygen.PublicKey); var decryptor = new Decryptor(context, keygen.SecretKey); var encrypted = new Ciphertext(); var plain = new Plaintext(); encryptor.Encrypt(encoder.Encode(0x12345678), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x12345678UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(1), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(1UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(2), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(2UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFD), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFDUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFE), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFEUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFF), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFFUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(314159265), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(314159265UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); } { parms.PolyModulus = "1x^256 + 1"; parms.CoeffModulus = new List <SmallModulus> { DefaultParams.SmallMods40Bit(0), DefaultParams.SmallMods40Bit(1), DefaultParams.SmallMods40Bit(2) }; var context = new SEALContext(parms); var keygen = new KeyGenerator(context); var encoder = new BalancedEncoder(plain_modulus); var encryptor = new Encryptor(context, keygen.PublicKey); var decryptor = new Decryptor(context, keygen.SecretKey); var encrypted = new Ciphertext(); var plain = new Plaintext(); encryptor.Encrypt(encoder.Encode(0x12345678), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x12345678UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(1), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(1UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(2), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(2UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFD), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFDUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFE), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFEUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(0x7FFFFFFFFFFFFFFF), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(0x7FFFFFFFFFFFFFFFUL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); encryptor.Encrypt(encoder.Encode(314159265), encrypted); decryptor.Decrypt(encrypted, plain); Assert.AreEqual(314159265UL, encoder.DecodeUInt64(plain)); Assert.AreEqual(encrypted.HashBlock, parms.HashBlock); } }
static void ExampleParameterSelection() { PrintExampleBanner("Example: Automatic Parameter Selection"); /* * Here we demonstrate the automatic parameter selection tool. Suppose we want to find parameters * that are optimized in a way that allows us to evaluate the polynomial 42x^3-27x+1. We need to know * the size of the input data, so let's assume that x is an integer with base-3 representation of length * at most 10. */ Console.Write("Finding optimized parameters for computing 42x^3-27x+1 ... "); var chooserEncoder = new ChooserEncoder(); var chooserEvaluator = new ChooserEvaluator(); // First create a ChooserPoly representing the input data. You can think of this modeling a freshly // encrypted cipheretext of a plaintext polynomial with length at most 10 coefficients, where the // coefficients have absolute value at most 1. var cinput = new ChooserPoly(10, 1); // Compute the first term var ccubedInput = chooserEvaluator.Exponentiate(cinput, 3); var cterm1 = chooserEvaluator.MultiplyPlain(ccubedInput, chooserEncoder.Encode(42)); // Compute the second term var cterm2 = chooserEvaluator.MultiplyPlain(cinput, chooserEncoder.Encode(27)); // Subtract the first two terms var csum12 = chooserEvaluator.Sub(cterm1, cterm2); // Add the constant term 1 var cresult = chooserEvaluator.AddPlain(csum12, chooserEncoder.Encode(1)); // To find an optimized set of parameters, we use ChooserEvaluator::select_parameters(...). var optimalParms = new EncryptionParameters(); chooserEvaluator.SelectParameters(cresult, optimalParms); Console.WriteLine("done."); // Let's print these to see what was recommended Console.WriteLine("Selected parameters:"); Console.WriteLine("{{ poly_modulus: {0}", optimalParms.PolyModulus.ToString()); Console.WriteLine("{{ coeff_modulus: {0}", optimalParms.CoeffModulus.ToString()); Console.WriteLine("{{ plain_modulus: {0}", optimalParms.PlainModulus.ToDecimalString()); Console.WriteLine("{{ decomposition_bit_count: {0}", optimalParms.DecompositionBitCount); Console.WriteLine("{{ noise_standard_deviation: {0}", optimalParms.NoiseStandardDeviation); Console.WriteLine("{{ noise_max_deviation: {0}", optimalParms.NoiseMaxDeviation); // Let's try to actually perform the homomorphic computation using the recommended parameters. // Generate keys. Console.WriteLine("Generating keys..."); var generator = new KeyGenerator(optimalParms); generator.Generate(); Console.WriteLine("... key generation completed"); var publicKey = generator.PublicKey; var secretKey = generator.SecretKey; var evaluationKeys = generator.EvaluationKeys; // Create the encoding/encryption tools var encoder = new BalancedEncoder(optimalParms.PlainModulus); var encryptor = new Encryptor(optimalParms, publicKey); var evaluator = new Evaluator(optimalParms, evaluationKeys); var decryptor = new Decryptor(optimalParms, secretKey); // Now perform the computations on real encrypted data. const int inputValue = 12345; var plainInput = encoder.Encode(inputValue); Console.WriteLine("Encoded {0} as polynomial {1}", inputValue, plainInput.ToString()); Console.Write("Encrypting ... "); var input = encryptor.Encrypt(plainInput); Console.WriteLine("done."); // Compute the first term Console.Write("Computing first term ... "); var cubedInput = evaluator.Exponentiate(input, 3); var term1 = evaluator.MultiplyPlain(cubedInput, encoder.Encode(42)); Console.WriteLine("done."); // Compute the second term Console.Write("Computing second term ... "); var term2 = evaluator.MultiplyPlain(input, encoder.Encode(27)); Console.WriteLine("done."); // Subtract the first two terms Console.Write("Subtracting first two terms ... "); var sum12 = evaluator.Sub(term1, term2); Console.WriteLine("done."); // Add the constant term 1 Console.Write("Adding one ... "); var result = evaluator.AddPlain(sum12, encoder.Encode(1)); Console.WriteLine("done."); // Decrypt and decode Console.Write("Decrypting ... "); var plainResult = decryptor.Decrypt(result); Console.WriteLine("done."); // Finally print the result Console.WriteLine("Polynomial 42x^3-27x+1 evaluated at x=12345: {0}", encoder.DecodeUInt64(plainResult)); // How much noise did we end up with? Console.WriteLine("Noise in the result: {0}/{1} bits", Utilities.InherentNoise(result, optimalParms, secretKey).GetSignificantBitCount(), Utilities.InherentNoiseMax(optimalParms).GetSignificantBitCount()); }