コード例 #1
0
        public void SingleIterationOfLearnWithActivationFunctionReturnCorrectResult()
        {
            // Arrange
            var activationFunction = ActivationFunction.Sigmoid;
            var model          = CreateFullyConnectedNeuralNetworkModel(activationFunction);
            var batch          = CreateBatch();
            var expectedResult = new FullyConnectedNeuralNetworkModel
            {
                ActivationCountsPerLayer = new[] { 4, 3 },
                ActivationFunction       = activationFunction,
                BiasLayers = new[]
                {
                    new[] { -1.2943006116609224, 0.77069126468580773, 0.41209730715748505 }
                },
                WeightLayers = new[]
                {
                    new[, ]
                    {
                        { -0.80537379400399278, 0.41910423130779234, -0.97124654040321312 },
                        { 0.40789139000539582, -0.89706697984869466, 0.46692747025766013 },
                        { -0.7938561825726973, -0.74708704168834117, -0.0907913437911862 },
                        { 0.536301613044516, 0.1534224913289616, -0.76938811941200691 }
                    }
                }
            };

            mockExecuter.Setup(m => m.Execute(It.IsAny <FullyConnectedNeuralNetworkModel>(), It.Is <double[]>(it => it.Equals(batch[0].Inputs))))
            .Returns <FullyConnectedNeuralNetworkModel, double[]>((arg1, arg2) => new double[][] { arg2, new[] { 0.23878872335077425, 0.41971501950211154, 0.66660062117031826 } });
            mockExecuter.Setup(m => m.Execute(It.IsAny <FullyConnectedNeuralNetworkModel>(), It.Is <double[]>(it => it.Equals(batch[1].Inputs))))
            .Returns <FullyConnectedNeuralNetworkModel, double[]>((arg1, arg2) => new double[][] { arg2, new[] { 0.51112549346515468, 0.53561880887592039, 0.61608786703901575 } });
            mockSigmoidActivationFunction.Setup(m => m.CalculateDerivative(It.IsAny <double>()))
            .Returns <double>(arg1 => 0.5 * arg1);

            sut.Initialize(model);

            // Act
            sut.Learn(batch);

            // Assert
            mockExecuter.Verify(m => m.Execute(It.IsAny <FullyConnectedNeuralNetworkModel>(), It.Is <double[]>(it => it.Equals(batch[0].Inputs))), Times.Once);
            mockExecuter.Verify(m => m.Execute(It.IsAny <FullyConnectedNeuralNetworkModel>(), It.Is <double[]>(it => it.Equals(batch[1].Inputs))), Times.Once);
            mockSigmoidActivationFunction.Verify(m => m.CalculateDerivative(It.IsAny <double>()), Times.Exactly(model.BiasLayers.Sum(l => l.Length) * batch.Length));
            sut.Model.Should().BeEquivalentTo(expectedResult);
        }
コード例 #2
0
        public void InitializeSetsTheModelCorrectly()
        {
            // Arrange
            var model = new FullyConnectedNeuralNetworkModel();

            // Act
            sut.Initialize(model);

            // Assert
            sut.Model.Should().BeSameAs(model);
        }