コード例 #1
0
        /// <summary>Computes a matrix-matrix product where one input matrix is Hermitian, i.e. C := \alpha*A*B + \beta*C or C := \alpha*B*A + \beta*C, where A is a Hermitian matrix.
        /// </summary>
        /// <param name="m">The number of rows of matrix C.</param>
        /// <param name="n">The number of columns of matrix C.</param>
        /// <param name="alpha">The scalar \alpha.</param>
        /// <param name="a">The Hermitian matrix A supplied column-by-column of dimension (<paramref name="ldc"/>, ka), where ka is <paramref name="m"/> if to calculate C := \alpha*A*B + \beta*C; <paramref name="n"/> otherwise.</param>
        /// <param name="b">The matrix B supplied column-by-column of dimension (<paramref name="ldb"/>, <paramref name="n"/>).</param>
        /// <param name="beta">The scalar \beta.</param>
        /// <param name="c">The matrix C supplied column-by-column of dimension (<paramref name="ldc"/>, <paramref name="n"/>).</param>
        /// <param name="lda">The leading dimension of <paramref name="a"/>, must be at least max(1,<paramref name="m"/>) if to calculate C := \alpha*A*B + \beta*C; max(1, <paramref name="n"/>) otherwise.</param>
        /// <param name="ldb">The leading dimension of <paramref name="b"/>, must be at least max(1,<paramref name="m"/>).</param>
        /// <param name="ldc">The leading dimension of <paramref name="c"/>, must be at least max(1, <paramref name="m"/>).</param>
        /// <param name="side">A value indicating whether to calculate C := \alpha*A*B + \beta*C or C := \alpha*B*A + \beta*C.</param>
        /// <param name="triangularMatrixType">A value whether matrix A is in its upper or lower triangular representation.</param>
        public void zhemm(int m, int n, Complex alpha, Complex[] a, Complex[] b, Complex beta, Complex[] c, int lda, int ldb, int ldc, BLAS.Side side = BLAS.Side.Left, BLAS.TriangularMatrixType triangularMatrixType = BLAS.TriangularMatrixType.UpperTriangularMatrix)
        {
            if (m == 0 || n == 0 || ((alpha == 0.0) && (beta == 1.0)))
            {
                return; // nothing to do
            }

            if (side == BLAS.Side.Left)  // C = \alpha *A *B +\beta*C
            {
                if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int i = 0; i < m; i++)
                        {
                            var temp = alpha * b[i + j * lda];

                            Complex temp2 = 0.0;
                            for (int k = 0; k <= i - 1; k++)
                            {
                                c[k + j * ldc] += temp * a[k + i * lda];
                                temp2          += b[k + j * ldb] * Complex.Conjugate(a[k + i * lda]);
                            }
                            c[i + j * ldc] = beta * c[i + j * ldc] + a[i + i * lda].Real * temp.Real + Complex.ImaginaryOne * a[i + i * lda].Real * temp.Imaginary + alpha * temp2;
                        }
                    }
                }
                else
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int i = m - 1; i >= 0; i--)
                        {
                            Complex temp  = alpha * b[i + j * ldb];
                            Complex temp2 = 0.0;

                            for (int k = i + 1; k < m; k++)
                            {
                                c[k + j * ldc] += temp * a[k + i * lda];
                                temp2          += b[k + j * ldb] * Complex.Conjugate(a[k + i * lda]);
                            }
                            c[i + j * ldc] = beta * c[i + j * ldc] + alpha * temp2 + a[i + i * lda].Real * temp.Real + Complex.ImaginaryOne * (a[i + i * lda].Real * temp.Imaginary);
                        }
                    }
                }
            }
            else if (side == BLAS.Side.Right)  // C = \alpha*B*A + \beta *C
            {
                for (int j = 0; j < n; j++)
                {
                    Complex temp = alpha * a[j + j * lda].Real;
                    for (int i = 0; i < m; i++)
                    {
                        c[i + j * ldc] = beta * c[i + j * ldc] + temp * b[i + j * ldb];
                    }

                    for (int k = 0; k <= j - 1; k++)
                    {
                        if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
                        {
                            temp = alpha * a[k + j * lda];
                        }
                        else
                        {
                            temp = alpha * Complex.Conjugate(a[j + k * lda]);
                        }
                        for (int i = 0; i < m; i++)
                        {
                            c[i + j * ldc] += temp * b[i + k * ldb];
                        }
                    }
                    for (int k = j + 1; k < n; k++)
                    {
                        if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
                        {
                            temp = alpha * Complex.Conjugate(a[j + k * lda]);
                        }
                        else
                        {
                            temp = alpha * a[k + j * lda];
                        }
                        for (int i = 0; i < m; i++)
                        {
                            c[i + j * ldc] += temp * b[i + k * ldb];
                        }
                    }
                }
            }
            else
            {
                throw new NotImplementedException(side.ToString());
            }
        }
コード例 #2
0
        /// <summary>Computes a matrix-matrix product where one input matrix is symmetric, i.e. C := \alpha*A*B + \beta*C or C := \alpha*B*A +\beta*C.
        /// </summary>
        /// <param name="m">The number of rows of the matrix C.</param>
        /// <param name="n">The number of columns of the matrix C.</param>
        /// <param name="alpha">The scalar \alpha.</param>
        /// <param name="a">The symmetric matrix A supplied column-by-column of dimension (<paramref name="lda"/>, ka), where ka is <paramref name="m"/> if to calculate C := \alpha * A*B + \beta*C; otherwise <paramref name="n"/>.</param>
        /// <param name="b">The matrix B supplied column-by-column of dimension (<paramref name="ldb"/>,<paramref name="n"/>).</param>
        /// <param name="beta">The scalar \beta.</param>
        /// <param name="c">The matrix C supplied column-by-column of dimension (<paramref name="ldc"/>,<paramref name="n"/>); input/output.</param>
        /// <param name="lda">The leading dimension of <paramref name="a"/>, must be at least max(1,<paramref name="m"/>) if <paramref name="side"/>=left; max(1,n) otherwise.</param>
        /// <param name="ldb">The leading dimension of <paramref name="b"/>, must be at least max(1,<paramref name="m"/>).</param>
        /// <param name="ldc">The leading dimension of <paramref name="c"/>, must be at least max(1,<paramref name="m"/>).</param>
        /// <param name="side">A value indicating whether to calculate C := \alpha * A*B + \beta*C or C := \alpha * B*A +\beta*C.</param>
        /// <param name="triangularMatrixType">A value whether matrix A is in its upper or lower triangular representation.</param>
        public void dsymm(int m, int n, double alpha, double[] a, double[] b, double beta, double[] c, int lda, int ldb, int ldc, BLAS.Side side = BLAS.Side.Left, BLAS.TriangularMatrixType triangularMatrixType = BLAS.TriangularMatrixType.UpperTriangularMatrix)
        {
            if (m == 0 || n == 0 || ((alpha == 0.0) && (beta == 1.0)))
            {
                return; // nothing to do
            }

            if (side == BLAS.Side.Left)  // C = \alpha *A *B +\beta*C
            {
                if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int i = 0; i < m; i++)
                        {
                            double temp = alpha * b[i + j * lda];

                            double temp2 = 0.0;
                            for (int k = 0; k < i; k++)
                            {
                                c[k + j * ldc] += temp * a[k + i * lda];
                                temp2          += b[k + j * ldb] * a[k + i * lda];
                            }
                            c[i + j * ldc] = beta * c[i + j * ldc] + temp * a[i + i * lda] + alpha * temp2;
                        }
                    }
                }
                else
                {
                    for (int j = 0; j < n; j++)
                    {
                        for (int i = m - 1; i >= 0; i--)
                        {
                            double temp  = alpha * b[i + j * ldb];
                            double temp2 = 0.0;
                            for (int k = i + 1; k < m; k++)
                            {
                                c[k + j * ldc] += temp * a[k + i * lda];
                                temp2          += b[k + j * ldb] * a[k + i * lda];
                            }
                            c[i + j * ldc] = beta * c[i + j * ldc] + temp * a[i + i * lda] + alpha * temp2;
                        }
                    }
                }
            }
            else if (side == BLAS.Side.Right)  // C = \alpha*B*A + \beta *C
            {
                for (int j = 0; j < n; j++)
                {
                    double temp = alpha * a[j + j * lda];
                    for (int i = 0; i < m; i++)
                    {
                        c[i + j * ldc] = beta * c[i + j * ldc] + temp * b[i + j * ldb];
                    }

                    for (int k = 0; k < j; k++)
                    {
                        if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
                        {
                            temp = alpha * a[k + j * lda];
                        }
                        else
                        {
                            temp = alpha * a[j + k * lda];
                        }
                        for (int i = 0; i < m; i++)
                        {
                            c[i + j * ldc] += temp * b[i + k * ldb];
                        }
                    }
                    for (int k = j + 1; k < n; k++)
                    {
                        if (triangularMatrixType == BLAS.TriangularMatrixType.UpperTriangularMatrix)
                        {
                            temp = alpha * a[j + k * lda];
                        }
                        else
                        {
                            temp = alpha * a[k + j * lda];
                        }
                        for (int i = 0; i < m; i++)
                        {
                            c[i + j * ldc] += temp * b[i + k * ldb];
                        }
                    }
                }
            }
            else
            {
                throw new NotImplementedException(side.ToString());
            }
        }