static void Main(string[] args) { Random random = new Random(); int test = 10; Console.WriteLine("You are runnning the Data Structures example."); Console.WriteLine("======================================================"); Console.WriteLine(); #region Link (aka Tuple) Console.WriteLine(" Link------------------------------------"); Console.WriteLine(); Console.WriteLine(" A \"Link\" is like a System.Tuple that implements"); Console.WriteLine(" Towel.DataStructures.DataStructure. A Link/Tuple is"); Console.WriteLine(" used when you have a small, known-sized set of objects"); Console.WriteLine(" that you want to bundle together without making a custom"); Console.WriteLine(" custom class."); Console.WriteLine(); Link link = new Link <int, int, int, int, int, int>(0, 1, 2, 3, 4, 5); Console.Write(" Traversal: "); link.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" Size: " + link.Size); Console.WriteLine(); #endregion #region Indexed (aka Array) Console.WriteLine(" Indexed---------------------------------"); Console.WriteLine(); Console.WriteLine(" An \"Indexed\" is just a wrapper for arrays that implements"); Console.WriteLine(" Towel.DataStructures.DataStructure. An array is used when"); Console.WriteLine(" dealing with static-sized, known-sized sets of data. Arrays"); Console.WriteLine(" can be sorted along 1 dimensions for binary searching algorithms."); Console.WriteLine(); IIndexed <int> indexed = new IndexedArray <int>(test); Console.Write(" Filling in (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { indexed[i] = i; } Console.WriteLine(); Console.Write(" Traversal: "); indexed.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" Length: " + indexed.Length); Console.WriteLine(); #endregion #region Addable (aka List) Console.WriteLine(" Addable---------------------------------"); Console.WriteLine(); Console.WriteLine(" An \"Addable\" is like an IList that implements"); Console.WriteLine(" Towel.DataStructures.DataStructure. \"AddableArray\" is"); Console.WriteLine(" the array implementation while \"AddableLinked\" is the"); Console.WriteLine(" the linked-list implementation. An Addable/List is used"); Console.WriteLine(" when dealing with an unknown quantity of data that you"); Console.WriteLine(" will likely have to enumerate/step through everything. The"); Console.WriteLine(" AddableArray shares the properties of an Indexed/Array in"); Console.WriteLine(" that it can be relateively quickly sorted along 1 dimensions"); Console.WriteLine(" for binary search algorithms."); Console.WriteLine(); // AddableArray --------------------------------------- IAddable <int> addableArray = new AddableArray <int>(test); Console.Write(" [AddableArray] Adding (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { addableArray.Add(i); } Console.WriteLine(); Console.Write(" [AddableArray] Traversal: "); addableArray.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" [AddableArray] Count: " + addableArray.Count); addableArray.Clear(); // Clears the addable Console.WriteLine(); // AddableLinked --------------------------------------- IAddable <int> addableLinked = new AddableLinked <int>(); Console.Write(" [AddableLinked] Adding (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { addableLinked.Add(i); } Console.WriteLine(); Console.Write(" [AddableLinked] Traversal: "); addableLinked.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" [AddableLinked] Count: " + addableLinked.Count); addableLinked.Clear(); // Clears the addable Console.WriteLine(); #endregion #region FirstInLastOut (aka stack) { Console.WriteLine(" FirstInLastOut---------------------------------"); Console.WriteLine(); Console.WriteLine(" An \"FirstInLastOut\" is a Stack that implements"); Console.WriteLine(" Towel.DataStructures.DataStructure. \"FirstInLastOutArray\" is"); Console.WriteLine(" the array implementation while \"FirstInLastOutLinked\" is the"); Console.WriteLine(" the linked-list implementation. A FirstInLastOut/Stack is used"); Console.WriteLine(" specifically when you need the algorithm provided by the Push"); Console.WriteLine(" and Pop functions."); Console.WriteLine(); IFirstInLastOut <int> firstInLastOutArray = new FirstInLastOutArray <int>(); Console.Write(" [FirstInLastOutArray] Pushing (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { firstInLastOutArray.Push(i); } Console.WriteLine(); Console.Write(" [FirstInLastOutArray] Traversal: "); firstInLastOutArray.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop()); Console.WriteLine(" [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop()); Console.WriteLine(" [FirstInLastOutArray] Peek: " + firstInLastOutArray.Peek()); Console.WriteLine(" [FirstInLastOutArray] Pop: " + firstInLastOutArray.Pop()); Console.WriteLine(" [FirstInLastOutArray] Count: " + firstInLastOutArray.Count); firstInLastOutArray.Clear(); // Clears the firstInLastOut Console.WriteLine(); IFirstInLastOut <int> firstInLastOutLinked = new FirstInLastOutLinked <int>(); Console.Write(" [FirstInLastOutLinked] Pushing (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { firstInLastOutLinked.Push(i); } Console.WriteLine(); Console.Write(" [FirstInLastOutLinked] Traversal: "); firstInLastOutLinked.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop()); Console.WriteLine(" [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop()); Console.WriteLine(" [FirstInLastOutLinked] Peek: " + firstInLastOutLinked.Peek()); Console.WriteLine(" [FirstInLastOutLinked] Pop: " + firstInLastOutLinked.Pop()); Console.WriteLine(" [FirstInLastOutLinked] Count: " + firstInLastOutLinked.Count); firstInLastOutLinked.Clear(); // Clears the firstInLastOut Console.WriteLine(); } #endregion #region FirstInFirstOut (aka Queue) { Console.WriteLine(" FirstInFirstOut---------------------------------"); Console.WriteLine(); Console.WriteLine(" An \"FirstInFirstOut\" is a Queue that implements"); Console.WriteLine(" Towel.DataStructures.DataStructure. \"FirstInFirstOutArray\" is"); Console.WriteLine(" the array implementation while \"FirstInFirstOutLinked\" is the"); Console.WriteLine(" the linked-list implementation. A FirstInFirstOut/Stack is used"); Console.WriteLine(" specifically when you need the algorithm provided by the Queue"); Console.WriteLine(" and Dequeue functions."); Console.WriteLine(); IFirstInFirstOut <int> firstInFirstOutArray = new FirstInFirstOutArray <int>(); Console.Write(" [FirstInFirstOutArray] Enqueuing (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { firstInFirstOutArray.Enqueue(i); } Console.WriteLine(); Console.Write(" [FirstInFirstOutArray] Traversal: "); firstInFirstOutArray.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue()); Console.WriteLine(" [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue()); Console.WriteLine(" [FirstInFirstOutArray] Peek: " + firstInFirstOutArray.Peek()); Console.WriteLine(" [FirstInFirstOutArray] Dequeue: " + firstInFirstOutArray.Dequeue()); Console.WriteLine(" [FirstInFirstOutArray] Count: " + firstInFirstOutArray.Count); firstInFirstOutArray.Clear(); // Clears the firstInLastOut Console.WriteLine(); IFirstInFirstOut <int> firstInFirstOutLinked = new FirstInFirstOutLinked <int>(); Console.Write(" [FirstInFirstOutLinked] Enqueuing (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { firstInFirstOutLinked.Enqueue(i); } Console.WriteLine(); Console.Write(" [FirstInFirstOutLinked] Traversal: "); firstInFirstOutLinked.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue()); Console.WriteLine(" [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue()); Console.WriteLine(" [FirstInFirstOutLinked] Peek: " + firstInFirstOutLinked.Peek()); Console.WriteLine(" [FirstInFirstOutLinked] Pop: " + firstInFirstOutLinked.Dequeue()); Console.WriteLine(" [FirstInFirstOutLinked] Count: " + firstInFirstOutLinked.Count); firstInFirstOutLinked.Clear(); // Clears the firstInLastOut Console.WriteLine(); } #endregion #region Heap { Console.WriteLine(" Heap---------------------------------"); Console.WriteLine(); Console.WriteLine(" An \"Heap\" is a binary tree that stores items based on priorities."); Console.WriteLine(" It implements Towel.DataStructures.DataStructure like the others."); Console.WriteLine(" It uses sifting algorithms to move nodes vertically through itself."); Console.WriteLine(" It is often the best data structure for standard priority queues."); Console.WriteLine(" \"HeapArray\" is an implementation where the tree has been flattened"); Console.WriteLine(" into an array."); Console.WriteLine(); Console.WriteLine(" Let's say the priority is how close a number is to \"5\"."); Console.WriteLine(" So \"Dequeue\" will give us the next closest value to \"5\"."); Comparison Priority(int a, int b) { int _a = Compute.AbsoluteValue(a - 5); int _b = Compute.AbsoluteValue(b - 5); Comparison comparison = Compare.Wrap(_b.CompareTo(_a)); return(comparison); } Console.WriteLine(); IHeap <int> heapArray = new HeapArray <int>(Priority); Console.Write(" [HeapArray] Enqueuing (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { heapArray.Enqueue(i); } Console.WriteLine(); Console.WriteLine(" [HeapArray] Dequeue: " + heapArray.Dequeue()); Console.WriteLine(" [HeapArray] Dequeue: " + heapArray.Dequeue()); Console.WriteLine(" [HeapArray] Peek: " + heapArray.Peek()); Console.WriteLine(" [HeapArray] Dequeue: " + heapArray.Dequeue()); Console.WriteLine(" [HeapArray] Count: " + heapArray.Count); heapArray.Clear(); // Clears the heapArray Console.WriteLine(); } #endregion #region Tree //Console.WriteLine(" Tree-----------------------------"); //Tree<int> tree_Map = new TreeMap<int>(0, Compute.Equal, Hash.Default); //for (int i = 1; i < test; i++) //{ // tree_Map.Add(i, i / Compute.SquareRoot(i)); //} //Console.Write(" Children of 0 (root): "); //tree_Map.Children(0, (int i) => { Console.Write(i + " "); }); //Console.WriteLine(); //Console.Write(" Children of " + ((int)System.Math.Sqrt(test) - 1) + " (root): "); //tree_Map.Children(((int)System.Math.Sqrt(test) - 1), (int i) => { Console.Write(i + " "); }); //Console.WriteLine(); //Console.Write(" Traversal: "); //tree_Map.Stepper((int i) => { Console.Write(i + " "); }); //Console.WriteLine(); //Console.WriteLine(); #endregion #region AVL Tree { Console.WriteLine(" AvlTree------------------------------------------------"); Console.WriteLine(); Console.WriteLine(" An AVL Tree is a sorted binary tree."); Console.WriteLine(" It implements Towel.DataStructures.DataStructure like the others."); Console.WriteLine(" It allows for very fast 1D ranged queries/traversals."); Console.WriteLine(" It is very similar to an Red Black tree, but uses a different sorting algorithm."); Console.WriteLine(); IAvlTree <int> avlTree = new AvlTreeLinked <int>(); Console.Write(" Adding (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { avlTree.Add(i); } Console.WriteLine(); Console.Write(" Traversal: "); avlTree.Stepper(i => Console.Write(i)); Console.WriteLine(); //// Note: Because the nodes in AVL Tree linked do not have //// a parent pointer, the IEnumerable "foreach" iteration //// is extremely slow and should be avoided. It requires //// a stack for it's iteration. // //Console.Write(" Traversal Foreach: "); //foreach (int i in avlTree) //{ // Console.Write(i); //} //Console.WriteLine(); int minimum = random.Next(1, test / 2); int maximum = random.Next(1, test / 2) + test / 2; Console.Write(" Ranged Traversal [" + minimum + "-" + maximum + "]: "); avlTree.Stepper(i => Console.Write(i), minimum, maximum); Console.WriteLine(); int removal = random.Next(0, test); Console.Write(" Remove(" + removal + "): "); avlTree.Remove(removal); avlTree.Stepper(i => Console.Write(i)); Console.WriteLine(); int contains = random.Next(0, test); Console.WriteLine(" Contains(" + contains + "): " + avlTree.Contains(contains)); Console.WriteLine(" Current Least: " + avlTree.CurrentLeast); Console.WriteLine(" Current Greatest: " + avlTree.CurrentGreatest); Console.WriteLine(" Count: " + avlTree.Count); avlTree.Clear(); // Clears the AVL tree Console.WriteLine(); } #endregion #region Red-Black Tree { Console.WriteLine(" Red-Black Tree------------------------------------------------"); Console.WriteLine(); Console.WriteLine(" An Red-Black Tree is a sorted binary tree."); Console.WriteLine(" It implements Towel.DataStructures.DataStructure like the others."); Console.WriteLine(" It allows for very fast 1D ranged queries/traversals."); Console.WriteLine(" It is very similar to an AVL tree, but uses a different sorting algorithm."); Console.WriteLine(); IRedBlackTree <int> redBlackTree = new RedBlackTreeLinked <int>(); Console.Write(" Adding (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { redBlackTree.Add(i); } Console.WriteLine(); Console.Write(" Traversal: "); redBlackTree.Stepper(i => Console.Write(i)); Console.WriteLine(); int minimum = random.Next(1, test / 2); int maximum = random.Next(1, test / 2) + test / 2; Console.Write(" Ranged Traversal [" + minimum + "-" + maximum + "]: "); redBlackTree.Stepper(i => Console.Write(i), minimum, maximum); Console.WriteLine(); int removal = random.Next(0, test); Console.Write(" Remove(" + removal + "): "); redBlackTree.Remove(removal); redBlackTree.Stepper(i => Console.Write(i)); Console.WriteLine(); int contains = random.Next(0, test); Console.WriteLine(" Contains(" + contains + "): " + redBlackTree.Contains(contains)); Console.WriteLine(" Current Least: " + redBlackTree.CurrentLeast); Console.WriteLine(" Current Greatest: " + redBlackTree.CurrentGreatest); Console.WriteLine(" Count: " + redBlackTree.Count); redBlackTree.Clear(); // Clears the Red Black tree Console.WriteLine(); } #endregion #region BTree { Console.WriteLine(" B Tree------------------------------------------------"); Console.WriteLine(); Console.WriteLine(" A B Tree is a sorted binary tree that allows multiple values to"); Console.WriteLine(" be stored per node. This makes it sort of a hybrid between a"); Console.WriteLine(" binary tree and an array. Because multiple values are stored "); Console.WriteLine(" per node, it means less nodes must be traversed to completely"); Console.WriteLine(" traverse the values in the B tree."); Console.WriteLine(); Console.WriteLine(" The generic B Tree in Towel is still in development."); Console.WriteLine(); } #endregion #region Set { Console.WriteLine(" Set------------------------------------------------"); Console.WriteLine(); Console.WriteLine(" A Set is like an Addable/List, but it does not allow duplicates. Sets are"); Console.WriteLine(" usually implemented using hash codes. Implementations with hash codes"); Console.WriteLine(" usually have very fast \"Contains\" checks to see if a value has already"); Console.WriteLine(" been added to the set."); Console.WriteLine(); ISet <int> setHashLinked = new SetHashLinked <int>(); Console.Write(" Adding (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { setHashLinked.Add(i); } Console.WriteLine(); Console.Write(" Traversal: "); setHashLinked.Stepper(i => Console.Write(i)); Console.WriteLine(); int a = random.Next(0, test); setHashLinked.Remove(a); Console.Write(" Remove(" + a + "): "); setHashLinked.Stepper(i => Console.Write(i)); Console.WriteLine(); int b = random.Next(0, test); Console.WriteLine(" Contains(" + b + "): " + setHashLinked.Contains(b)); Console.WriteLine(" Count: " + setHashLinked.Count); Console.WriteLine(); } #endregion #region Map (aka Dictionary) { Console.WriteLine(" Map------------------------------------------------"); Console.WriteLine(); Console.WriteLine(" A Map (aka Dictionary) is similar to a Set, but it stores two values (a "); Console.WriteLine(" key and a value). Maps do not allow duplicate keys much like Sets don't"); Console.WriteLine(" allow duplicate values. When provided with the key, the Map uses that key"); Console.WriteLine(" to look up the value that it is associated with. Thus, it allows you to "); Console.WriteLine(" \"map\" one object to another. As with Sets, Maps are usually implemented"); Console.WriteLine(" using hash codes."); Console.WriteLine(); // Note: the first generic is the value, the second is the key IMap <string, int> mapHashLinked = new MapHashLinked <string, int>(); Console.WriteLine(" Let's map each int to its word representation (ex 1 -> One)."); Console.Write(" Adding (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { mapHashLinked.Add(i, ((decimal)i).ToEnglishWords()); } Console.WriteLine(); Console.WriteLine(" Traversal: "); mapHashLinked.Keys(i => Console.WriteLine(" " + i + "->" + mapHashLinked[i])); Console.WriteLine(); int a = random.Next(0, test); mapHashLinked.Remove(a); Console.Write(" Remove(" + a + "): "); mapHashLinked.Keys(i => Console.Write(i)); Console.WriteLine(); int b = random.Next(0, test); Console.WriteLine(" Contains(" + b + "): " + mapHashLinked.Contains(b)); Console.WriteLine(" Count: " + mapHashLinked.Count); Console.WriteLine(); } #endregion #region OmnitreePoints { Console.WriteLine(" OmnitreePoints--------------------------------------"); Console.WriteLine(); Console.WriteLine(" An Omnitree is an ND SPT that allows for"); Console.WriteLine(" multidimensional sorting. Any time you need to look"); Console.WriteLine(" items up based on multiple fields/properties, then"); Console.WriteLine(" you might want to use an Omnitree. If you need to"); Console.WriteLine(" perform ranged queries on multiple dimensions, then"); Console.WriteLine(" the Omnitree is the data structure for you."); Console.WriteLine(); Console.WriteLine(" The \"OmnitreePoints\" stores individual points (vectors),"); Console.WriteLine(" and the \"OmnitreeBounds\" stores bounded objects (spaces)."); Console.WriteLine(); IOmnitreePoints <int, double, string, decimal> omnitree = new OmnitreePointsLinked <int, double, string, decimal>( // This is a location delegate. (how to locate the item along each dimension) (int index, out double a, out string b, out decimal c) => { a = index; b = index.ToString(); c = index; }); Console.Write(" Adding (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { omnitree.Add(i); } Console.WriteLine(); Console.Write(" Traversal: "); omnitree.Stepper(i => Console.Write(i)); Console.WriteLine(); int minimumXZ = random.Next(1, test / 2); int maximumXZ = random.Next(1, test / 2) + test / 2; string minimumY = minimumXZ.ToString(); string maximumY = maximumXZ.ToString(); Console.Write(" Spacial Traversal [" + "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" + "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: "); omnitree.Stepper(i => Console.Write(i), minimumXZ, maximumXZ, minimumY, maximumY, minimumXZ, maximumXZ); Console.WriteLine(); // Note: this "look up" is just a very narrow spacial query that (since we know the data) // wil only give us one result. int lookUp = random.Next(0, test); string lookUpToString = lookUp.ToString(); Console.Write(" Look Up (" + lookUp + ", \"" + lookUpToString + "\", " + lookUp + "): "); omnitree.Stepper(i => Console.Write(i), lookUp, lookUp, lookUp.ToString(), lookUp.ToString(), lookUp, lookUp); Console.WriteLine(); // Ignoring dimensions on traversals example. // If you want to ignore a column on a traversal, you can do so like this: omnitree.Stepper(i => { /*Do Nothing*/ }, lookUp, lookUp, Omnitree.Bound <string> .None, Omnitree.Bound <string> .None, Omnitree.Bound <decimal> .None, Omnitree.Bound <decimal> .None); Console.Write(" Counting Items In a Space [" + "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" + "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: "); omnitree.CountSubSpace( minimumXZ, maximumXZ, minimumY, maximumY, minimumXZ, maximumXZ); Console.WriteLine(); int removalMinimum = random.Next(1, test / 2); int removalMaximum = random.Next(1, test / 2) + test / 2; string removalMinimumY = removalMinimum.ToString(); string removalMaximumY = removalMaximum.ToString(); Console.Write(" Remove (" + removalMinimum + "-" + removalMaximum + "): "); omnitree.Remove( removalMinimum, removalMaximum, removalMinimumY, removalMaximumY, removalMinimum, removalMaximum); omnitree.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" Dimensions: " + omnitree.Dimensions); Console.WriteLine(" Count: " + omnitree.Count); omnitree.Clear(); // Clears the Omnitree Console.WriteLine(); } #endregion #region OmnitreeBounds { Console.WriteLine(" OmnitreeBounds--------------------------------------"); Console.WriteLine(); Console.WriteLine(" An Omnitree is an ND SPT that allows for"); Console.WriteLine(" multidimensional sorting. Any time you need to look"); Console.WriteLine(" items up based on multiple fields/properties, then"); Console.WriteLine(" you might want to use an Omnitree. If you need to"); Console.WriteLine(" perform ranged queries on multiple dimensions, then"); Console.WriteLine(" the Omnitree is the data structure for you."); Console.WriteLine(); Console.WriteLine(" The \"OmnitreePoints\" stores individual points (vectors),"); Console.WriteLine(" and the \"OmnitreeBounds\" stores bounded objects (spaces)."); Console.WriteLine(); IOmnitreeBounds <int, double, string, decimal> omnitree = new OmnitreeBoundsLinked <int, double, string, decimal>( // This is a location delegate. (how to locate the item along each dimension) (int index, out double min1, out double max1, out string min2, out string max2, out decimal min3, out decimal max3) => { string indexToString = index.ToString(); min1 = index; max1 = index; min2 = indexToString; max2 = indexToString; min3 = index; max3 = index; }); Console.Write(" Adding (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { omnitree.Add(i); } Console.WriteLine(); Console.Write(" Traversal: "); omnitree.Stepper(i => Console.Write(i)); Console.WriteLine(); int minimumXZ = random.Next(1, test / 2); int maximumXZ = random.Next(1, test / 2) + test / 2; string minimumY = minimumXZ.ToString(); string maximumY = maximumXZ.ToString(); Console.Write(" Spacial Traversal [" + "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" + "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: "); omnitree.StepperOverlapped(i => Console.Write(i), minimumXZ, maximumXZ, minimumY, maximumY, minimumXZ, maximumXZ); Console.WriteLine(); // Note: this "look up" is just a very narrow spacial query that (since we know the data) // wil only give us one result. int lookUpXZ = random.Next(0, test); string lookUpY = lookUpXZ.ToString(); Console.Write(" Look Up (" + lookUpXZ + ", \"" + lookUpY + "\", " + lookUpXZ + "): "); omnitree.StepperOverlapped(i => Console.Write(i), lookUpXZ, lookUpXZ, lookUpY, lookUpY, lookUpXZ, lookUpXZ); Console.WriteLine(); // Ignoring dimensions on traversals example. // If you want to ignore a dimension on a traversal, you can do so like this: omnitree.StepperOverlapped(i => { /*Do Nothing*/ }, lookUpXZ, lookUpXZ, // The "None" means there is no bound, so all values are valid Omnitree.Bound <string> .None, Omnitree.Bound <string> .None, Omnitree.Bound <decimal> .None, Omnitree.Bound <decimal> .None); Console.Write(" Counting Items In a Space [" + "(" + minimumXZ + ", \"" + minimumY + "\", " + minimumXZ + ")->" + "(" + maximumXZ + ", \"" + maximumY + "\", " + maximumXZ + ")]: " + omnitree.CountSubSpaceOverlapped( minimumXZ, maximumXZ, minimumY, maximumY, minimumXZ, maximumXZ)); Console.WriteLine(); int removalMinimumXZ = random.Next(1, test / 2); int removalMaximumXZ = random.Next(1, test / 2) + test / 2; string removalMinimumY = removalMinimumXZ.ToString(); string removalMaximumY = removalMaximumXZ.ToString(); Console.Write(" Remove (" + removalMinimumXZ + "-" + removalMaximumXZ + "): "); omnitree.RemoveOverlapped( removalMinimumXZ, removalMaximumXZ, removalMinimumY, removalMaximumY, removalMinimumXZ, removalMaximumXZ); omnitree.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" Dimensions: " + omnitree.Dimensions); Console.WriteLine(" Count: " + omnitree.Count); omnitree.Clear(); // Clears the Omnitree Console.WriteLine(); } #endregion #region KD Tree { Console.WriteLine(" KD Tree------------------------------------------------"); Console.WriteLine(); Console.WriteLine(" A KD Tree binary tree that stores points sorted along along an"); Console.WriteLine(" arbitrary number of dimensions. So it performs multidimensional"); Console.WriteLine(" sorting similar to the Omnitree (Quadtree/Octree) in Towel, but"); Console.WriteLine(" it uses a completely different algorithm and format."); Console.WriteLine(); Console.WriteLine(" The generic KD Tree in Towel is still in development."); Console.WriteLine(); } #endregion #region Graph { Console.WriteLine(" Graph------------------------------------------------"); Console.WriteLine(); Console.WriteLine(" A Graph is a data structure of nodes and edges. Nodes are values"); Console.WriteLine(" and edges are connections between those values. Graphs are often"); Console.WriteLine(" used to model real world data such as maps, and are often used in"); Console.WriteLine(" path finding algoritms. See the \"Algorithms\" example for path"); Console.WriteLine(" finding examples. This is just an example of how to make a graph."); Console.WriteLine(" A \"GraphSetOmnitree\" is an implementation where nodes are stored."); Console.WriteLine(" in a Set and edges are stored in an Omnitree (aka Quadtree)."); Console.WriteLine(); IGraph <int> graphSetOmnitree = new GraphSetOmnitree <int>(); Console.WriteLine(" Adding Nodes (0-" + (test - 1) + ")..."); for (int i = 0; i < test; i++) { graphSetOmnitree.Add(i); } int edgesPerNode = 3; Console.WriteLine(" Adding Random Edges (0-3 per node)..."); for (int i = 0; i < test; i++) { // lets use a heap to randomize the edges using random priorities IHeap <(int, int)> heap = new HeapArray <(int, int)>((x, y) => Compare.Wrap(x.Item2.CompareTo(y.Item2))); for (int j = 0; j < test; j++) { if (j != i) { heap.Enqueue((j, random.Next())); } } // dequeue some random edges from the heap and add them to the graph int randomEdgeCount = random.Next(edgesPerNode + 1); for (int j = 0; j < randomEdgeCount; j++) { graphSetOmnitree.Add(i, heap.Dequeue().Item1); } } Console.Write(" Nodes (Traversal): "); graphSetOmnitree.Stepper(i => Console.Write(i)); Console.WriteLine(); Console.WriteLine(" Edges (Traversal): "); graphSetOmnitree.Stepper((from, to) => Console.WriteLine(" " + from + "->" + to)); Console.WriteLine(); int a = random.Next(0, test); Console.Write(" Neighbors (" + a + "):"); graphSetOmnitree.Neighbors(a, i => Console.Write(" " + i)); Console.WriteLine(); int b = random.Next(0, test / 2); int c = random.Next(test / 2, test); Console.WriteLine(" Are Adjacent (" + b + ", " + c + "): " + graphSetOmnitree.Adjacent(b, c)); Console.WriteLine(" Node Count: " + graphSetOmnitree.NodeCount); Console.WriteLine(" Edge Count: " + graphSetOmnitree.EdgeCount); graphSetOmnitree.Clear(); // Clears the graph Console.WriteLine(); } #endregion #region Trie { Console.WriteLine(" Trie------------------------------------------------"); Console.WriteLine(); Console.WriteLine(" A Trie is a tree where portions of the data are stored in each node"); Console.WriteLine(" such that when you traverse the tree to a leaf, you have read the contents"); Console.WriteLine(" of that leaf along the way. Because of this, a Trie allows for its values"); Console.WriteLine(" to share data, which is a form of compression. So a Trie may be used to save"); Console.WriteLine(" memory. A trie may also be a very useful tool in pattern matching, because it"); Console.WriteLine(" it allows for culling based are portions of the data."); Console.WriteLine(); Console.WriteLine(" The generic Trie in Towel is still in development."); Console.WriteLine(); } #endregion Console.WriteLine("============================================"); Console.WriteLine("Examples Complete..."); Console.ReadLine(); }
[TestMethod] public void Remove_Testing() { // removing a non-existing value should throw exceptions { IAvlTree <int> tree = new AvlTreeLinked <int>() { 1, 3, }; Assert.ThrowsException <ArgumentException>(() => tree.Remove(2)); } // normal remove checking { IAvlTree <int> tree = new AvlTreeLinked <int>() { 1, 2, 3, }; Assert.IsTrue(tree.Count == 3); tree.Remove(1); Assert.IsFalse(tree.Contains(1)); Assert.IsTrue(tree.Count == 2); tree.Remove(2); Assert.IsFalse(tree.Contains(2)); Assert.IsTrue(tree.Count == 1); tree.Remove(3); Assert.IsFalse(tree.Contains(3)); Assert.IsTrue(tree.Count == 0); } { IAvlTree <int> tree = new AvlTreeLinked <int>(); Stepper.Iterate(100, i => tree.Add(i)); Assert.IsTrue(tree.Count == 100); Stepper.Iterate(100, i => tree.Remove(i)); Assert.IsTrue(tree.Count == 0); } // large randomized data set { const int count = 1000; IAvlTree <int> tree = new AvlTreeLinked <int>(); for (int i = 0; i < count; i++) { Assert.IsTrue(tree.Count == i); tree.Add(i); Assert.IsTrue(tree.Count == i + 1); Assert.IsTrue(tree.Contains(i)); int stepperCount = 0; tree.Stepper(x => stepperCount++); Assert.IsTrue(stepperCount == tree.Count); } int[] values = new int[count]; for (int i = 0; i < count; i++) { values[i] = i; } Random random = new Random(7); random.Shuffle(values); for (int i = 0; i < count; i++) { Assert.IsTrue(tree.Count == count - i); tree.Remove(values[i]); Assert.IsTrue(tree.Count == count - i - 1); Assert.IsFalse(tree.Contains(values[i])); int stepperCount = 0; tree.Stepper(x => stepperCount++); Assert.IsTrue(stepperCount == tree.Count); } } }