private static bool EnsureSuccess(ArpackResult result) { try { result.EnsureSuccess(); return(true); } catch (ArpackException e) { Console.WriteLine(e.Message); } return(false); }
/// <summary> /// Prints singular values and condition number. /// </summary> public static void Condition(SparseMatrix A, ArpackResult result) { if (!EnsureSuccess(result)) { return; } int m = A.RowCount; int n = A.ColumnCount; int nconv = result.ConvergedEigenValues; Console.WriteLine(); Console.WriteLine("Testing ARPACK++ SVD"); Console.WriteLine("Obtaining singular values by solving (A'*A)*v = sigma*v"); Console.WriteLine(); Console.WriteLine("Dimension of the system : " + n); Console.WriteLine("Number of 'requested' singular values: " + result.Count); Console.WriteLine("Number of 'converged' singular values: " + nconv); Console.WriteLine("Number of Arnoldi vectors generated : " + result.ArnoldiCount); Console.WriteLine("Number of iterations taken : " + result.IterationsTaken); Console.WriteLine(); var svals = result.EigenValuesReal(); // Calculating singular values. Console.WriteLine("Singular values of both end:"); for (int i = 0; i < nconv; i++) { svals[i] = Math.Sqrt(svals[i]); Console.WriteLine(" sigma[" + (i + 1) + "]: " + svals[i]); } Console.WriteLine(); Console.WriteLine(" Condition number of A : " + (svals[nconv - 1] / svals[0])); Console.WriteLine(); }
/// <summary> /// Prints singular values and vectors. /// </summary> public static void SVD(SparseMatrix A, ArpackResult result) { if (!EnsureSuccess(result)) { return; } int m = A.RowCount; int n = A.ColumnCount; int nconv = result.ConvergedEigenValues; Console.WriteLine(); Console.WriteLine("Testing ARPACK++ SVD"); Console.WriteLine("Compute partial SVD: A = U*S*V'"); Console.WriteLine(); Console.WriteLine("Dimension of the system : " + n); Console.WriteLine("Number of 'requested' singular values: " + result.Count); Console.WriteLine("Number of 'converged' singular values: " + nconv); Console.WriteLine("Number of Arnoldi vectors generated : " + result.ArnoldiCount); Console.WriteLine("Number of iterations taken : " + result.IterationsTaken); Console.WriteLine(); var svals = result.EigenValuesReal(); var svecs = result.EigenVectorsReal(); int nAx = (n > m) ? n : m; // Printing singular values. Console.WriteLine("Singular values:"); for (int i = 0; i < nconv; i++) { Console.WriteLine(" sigma[" + (i + 1) + "]: " + svals[i]); } Console.WriteLine(); if (svecs != null) { var temp = new double[m + n]; var v = new double[n]; var u = new double[m]; var r = new double[nconv]; // residuals var s = new double[nconv]; // residuals (transposed system) for (int i = 0; i < nconv; i++) { var sigma = svals[i]; svecs.Column(i, temp); // Compute A*v - sigma*u Array.Copy(temp, m, v, 0, n); Array.Copy(temp, 0, u, 0, m); A.Multiply(1.0, v, -sigma, u); r[i] = Vector.Norm(u) / Math.Abs(sigma); // Compute A'*u - sigma*v Array.Copy(temp, m, v, 0, n); Array.Copy(temp, 0, u, 0, m); A.TransposeMultiply(1.0, u, -sigma, v); s[i] = Vector.Norm(v) / Math.Abs(sigma); } // Printing the residual norm || A*v - sigma*u || // for the nconv accurately computed vectors u and v. for (int i = 0; i < nconv; i++) { Console.WriteLine("||A*v(" + (i + 1) + ") - sigma(" + (i + 1) + ")*u(" + (i + 1) + ")||: " + r[i]); } Console.WriteLine(); // Printing the residual norm || A'*u - sigma*v || // for the nconv accurately computed vectors u and v. for (int i = 0; i < nconv; i++) { Console.WriteLine("||A'*u(" + (i + 1) + ") - sigma(" + (i + 1) + ")*v(" + (i + 1) + ")||: " + s[i]); } Console.WriteLine(); } }
/// <summary> /// Prints eigenvalues and eigenvectors of nonsymmetric generalized eigen-problems. /// </summary> public static void General(SparseMatrix A, SparseMatrix B, ArpackResult result, bool shift, bool cshift = false) { if (!EnsureSuccess(result)) { return; } int n = A.RowCount; int nconv = result.ConvergedEigenValues; Console.WriteLine(); Console.WriteLine("Testing ARPACK++ class ARluNonSymGenEig"); Console.WriteLine("Real nonsymmetric generalized eigenvalue problem: A*x - lambda*B*x"); Console.WriteLine(!shift ? "Regular mode" : (cshift ? "Shift and invert mode (using the imaginary part of OP)" : "Shift and invert mode (using the real part of OP)")); Console.WriteLine(); Console.WriteLine("Dimension of the system : " + n); Console.WriteLine("Number of 'requested' eigenvalues : " + result.Count); Console.WriteLine("Number of 'converged' eigenvalues : " + nconv); Console.WriteLine("Number of Arnoldi vectors generated: " + result.ArnoldiCount); Console.WriteLine("Number of iterations taken : " + result.IterationsTaken); Console.WriteLine(); var evals = result.EigenValues; var evecs = result.EigenVectors; // Printing eigenvalues. Console.WriteLine("Eigenvalues:"); for (int i = 0; i < nconv; i++) { Console.WriteLine(" lambda[" + (i + 1) + "]: " + evals[i]); } Console.WriteLine(); if (evecs != null) { // Printing the residual norm || A*x - lambda*B*x || // for the nconv accurately computed eigenvectors. var x = new Complex[n]; var y = new Complex[n]; var r = new double[nconv]; // residuals for (int i = 0; i < nconv; i++) { var lambda = evals[i]; evecs.Column(i, x); CVector.Copy(x, y); // y = B*x B.Multiply(x, y); // y = A*x - lambda*B*x A.Multiply(1.0, x, -lambda, y); r[i] = CVector.Norm(y) / Complex.Abs(lambda); } for (int i = 0; i < nconv; i++) { Console.WriteLine("||A*x(" + i + ") - lambda(" + i + ")*B*x(" + i + ")||: " + r[i]); } Console.WriteLine(); } }
/// <summary> /// Prints eigenvalues and eigenvectors of symmetric generalized eigen-problems. /// </summary> public static void Symmetric(SparseMatrix A, SparseMatrix B, ArpackResult result, ShiftMode mode) { if (!EnsureSuccess(result)) { return; } int n = A.RowCount; int nconv = result.ConvergedEigenValues; Console.WriteLine(); Console.WriteLine("Testing ARPACK++ class ARluSymGenEig"); Console.WriteLine("Real symmetric generalized eigenvalue problem: A*x - lambda*B*x"); Console.WriteLine(); switch (mode) { case ShiftMode.None: Console.WriteLine("Regular mode"); break; case ShiftMode.Regular: Console.WriteLine("Shift and invert mode"); break; case ShiftMode.Buckling: Console.WriteLine("Buckling mode"); break; case ShiftMode.Cayley: Console.WriteLine("Cayley mode"); break; } Console.WriteLine(); Console.WriteLine("Dimension of the system : " + n); Console.WriteLine("Number of 'requested' eigenvalues : " + result.Count); Console.WriteLine("Number of 'converged' eigenvalues : " + nconv); Console.WriteLine("Number of Arnoldi vectors generated: " + result.ArnoldiCount); Console.WriteLine("Number of iterations taken : " + result.IterationsTaken); Console.WriteLine(); var evals = result.EigenValuesReal(); var evecs = result.EigenVectorsReal(); // Printing eigenvalues. Console.WriteLine("Eigenvalues:"); for (int i = 0; i < nconv; i++) { Console.WriteLine(" lambda[" + (i + 1) + "]: " + evals[i]); } Console.WriteLine(); if (evecs != null) { Symmetrize(ref A); Symmetrize(ref B); // Printing the residual norm || A*x - lambda*B*x || // for the nconv accurately computed eigenvectors. var x = new double[n]; var y = new double[n]; var r = new double[nconv]; // residuals for (int i = 0; i < nconv; i++) { var lambda = evals[i]; evecs.Column(i, x); Vector.Copy(x, y); // y = B*x B.Multiply(x, y); // y = A*x - lambda*B*x A.Multiply(1.0, x, -lambda, y); r[i] = Vector.Norm(y) / Math.Abs(lambda); } for (int i = 0; i < nconv; i++) { Console.WriteLine("||A*x(" + i + ") - lambda(" + i + ")*B*x(" + i + ")||: " + r[i]); } Console.WriteLine(); } }
/// <summary> /// Prints eigenvalues and eigenvectors of complex eigen-problems. /// </summary> public static void Print(SparseMatrix A, ArpackResult result, bool shift) { int n = A.RowCount; int nconv = result.ConvergedEigenValues; Console.WriteLine(); Console.WriteLine("Testing ARPACK++ class ARluCompStdEig"); Console.WriteLine("Complex eigenvalue problem: A*x - lambda*x"); Console.WriteLine(shift ? "Shift and invert mode" : "Regular mode"); Console.WriteLine(); Console.WriteLine("Dimension of the system : " + n); Console.WriteLine("Number of 'requested' eigenvalues : " + result.Count); Console.WriteLine("Number of 'converged' eigenvalues : " + nconv); Console.WriteLine("Number of Arnoldi vectors generated: " + result.ArnoldiCount); Console.WriteLine("Number of iterations taken : " + result.IterationsTaken); Console.WriteLine(); var evals = result.EigenValues; var evecs = result.EigenVectors; // Printing eigenvalues. Console.WriteLine("Eigenvalues:"); for (int i = 0; i < nconv; i++) { Console.WriteLine(" lambda[" + (i + 1) + "]: " + evals[i]); } Console.WriteLine(); if (evecs != null) { // Printing the residual norm || A*x - lambda*x || // for the nconv accurately computed eigenvectors. var x = new Complex[n]; var y = new Complex[n]; var r = new double[nconv]; // residuals for (int i = 0; i < nconv; i++) { var lambda = evals[i]; evecs.Column(i, x); Vector.Copy(x, y); // y = A*x - lambda*x A.Multiply(1.0, x, -lambda, y); r[i] = Vector.Norm(y) / Complex.Abs(lambda); } for (int i = 0; i < nconv; i++) { Console.WriteLine("||A*x(" + (i + 1) + ") - lambda(" + (i + 1) + ")*x(" + (i + 1) + ")||: " + r[i]); } Console.WriteLine(); } }