public double trainNetwork(TrainingTemplate trainingTemplate, AriesNeuroNet.Neurons.Neuron neuron, int maxGenerations, ErrorHistory errorProg) { int stableLimit = trainingTemplate.rows.Count; int stableGenerations = 0; int currentGeneration = 0; double error = 0; List<double> errorHistory = new List<double>(); //We innitialize the flags bool adjustedWeights = false; bool stableGenFlag = true; bool genLimitFlag = true; bool templateFlag = false; //Step 1 initialize the neurons to randomize weights neuron.randomizeWeights(); /* * Possible breaking mecanism * if(flag) { * Console.Writeline(adequate message) * return error * which breaks the function * } * */ for (int currentRow = 0; currentRow < trainingTemplate.rows.Count; currentRow++) { // I extract the current row TrainingRow row = trainingTemplate.rows[currentRow]; do { // I begin a new generation //Console.WriteLine("========================================================================"); //Console.WriteLine("Begining Generation: " + currentGeneration); //Console.WriteLine("Current row: " + currentRow); // I reset the adjutedWeights flag adjustedWeights = false; // I set the inputs neuron.setInputValues(row.inputs); // I fire the neuron neuron.fireNeuron(); // I get the expected output out of the template double expectedOutput = row.outputs[0]; // I get the real output fromt he neuron double realOutput = neuron.output.weightedReading; Console.WriteLine("Output is " + realOutput); // I calculate the error error = expectedOutput - realOutput; //Console.WriteLine("Error is " + error); // I make a decision based on the error if (error == 0) { //Console.WriteLine("I have not found an error"); stableGenerations++; // I set the flag so that I exit the while adjustedWeights = false; } else { //Console.WriteLine("I found an error"); //Console.WriteLine("The error is " + error); // I reset the stable generations counter stableGenerations = 0; // These are for debugging purposes //List<double> oldWeights = new List<double>(); //List<double> newWeights = new List<double>(); // I mark that I needed to adjust the weights. adjustedWeights = true; //Do the heavy duty processing foreach (NeuronPort input in neuron.inputs) { //oldWeights.Add(input.weight); input.weight += input.reading * learningRate * error; // To do finish this //newWeights.Add(input.weight); } Console.WriteLine("I corrected with " + (learningRate * error)); // I log the error to history errorHistory.Add(error); // I publish the old weights /* Console.WriteLine("Old weights: "); foreach (double weight in oldWeights) { Console.Write(weight + " "); } // I publish the new weights Console.WriteLine("New weights: " + newWeights); foreach (double weight in newWeights) { Console.Write(weight + " "); } * */ } // I mark that I've finished these generation currentGeneration++; //I check the conditions stableGenFlag = stableGenerations < stableLimit; genLimitFlag = currentGeneration < maxGenerations; templateFlag = currentRow < trainingTemplate.rows.Count; //the breaking conditions if (!stableGenFlag) { //Console.WriteLine("Ended due to stable limit gen") ; return error; } if (!genLimitFlag) { //Console.WriteLine("Ended due to limit of gens to train"); return error; } } while (adjustedWeights); //maybe not necesary ??? if (!stableGenFlag) { return error; } if (!genLimitFlag) { return error; } } errorProg.errorPoints = errorHistory; return error; }
public double trainNetwork2(TrainingTemplate trainingTemplate, AriesNeuroNet.Neurons.Neuron neuron, int maxGenerations) { int stableLimit = trainingTemplate.rows.Count; int stableGenerations = 0; int currentGeneration = 0; int currentRow = 0; List<double> errorHistory = new List<double>(); //Step 1 initialize the neurons to randomize weights neuron.randomizeWeights(); //We take into account that we might not need to adjust the weights bool adjustedWeights = false; bool stableGenFlag = true; bool genLimitFlag = true; bool templateFlag = false; double error = 0; do { //Main loop Console.WriteLine("========================================================================"); Console.WriteLine("Begining Generation: " + currentGeneration); //We assume this time arround we don't need to adjust adjustedWeights = false; //TODO add some printfs //Set the imputs // I need to cycle through the various templates List<double> inputs = trainingTemplate.rows[currentRow].inputs; neuron.setInputValues(inputs); //Fire the neuron neuron.fireNeuron(); //Get the expected output from the template this works only for training a perceptron double expectedOutput = trainingTemplate.rows[currentRow].outputs[0]; //Get the real output double realOutput = neuron.output.weightedReading; Console.WriteLine("Output is " + realOutput); //Calculate the error error = expectedOutput - realOutput; Console.WriteLine("Error is " + error); //Process the error if (error == 0) { Console.WriteLine("I have not found an error"); stableGenerations++; // I move on to the next training row currentRow = (currentRow + 1) % trainingTemplate.rows.Count; //Maybe I'm not so sure of this adjustedWeights = false; } else { stableGenerations = 0; Console.WriteLine("I found an error"); Console.WriteLine("The error is " + error); // Publish the old weights List<double> oldWeights = new List<double>(); List<double> newWeights = new List<double>(); // I mark that I needed to adjust the weights. adjustedWeights = true; //Do the heavy duty processing foreach (NeuronPort input in neuron.inputs) { oldWeights.Add(input.weight); input.weight += input.reading * learningRate * error; // To do finish this newWeights.Add(input.weight); } Console.WriteLine("I corrected with " + (learningRate * error)); Console.WriteLine("Old weights "); foreach (double weight in oldWeights) { Console.Write(weight + " "); } Console.WriteLine("New weights " + newWeights); foreach (double weight in newWeights) { Console.Write(weight + " "); } } //This constantly jumps throw the templates maybe not the best choice // Need to split this up into 2 loops one loops over the rows in the template // One loops in the rows correcting the errors // Or see wiki article currentGeneration++; //I check the conditions stableGenFlag = stableGenerations < stableLimit; genLimitFlag = currentGeneration < maxGenerations; templateFlag = currentRow < trainingTemplate.rows.Count; Console.WriteLine("adjustedWeights "+ adjustedWeights +" templateFlag " + templateFlag + " stableGenFlag " + stableGenFlag + " genLimitFlag " + genLimitFlag); Console.WriteLine("End of Generation: " + (currentGeneration-1)); Console.WriteLine("========================================================================"); Console.ReadKey(); } while (adjustedWeights /*&& stableGenFlag*/ && genLimitFlag && templateFlag); return error; }