public void AddNeuron() { if (!AllSynapses.Any()) { AddSynapse(); return; } //Debug.Log("Poczatek add neuron"); int tmp = RandomGenerator.Next(AllSynapses.Count); Synapse oldSyn = AllSynapses.ToList()[tmp].Value; AllSynapses.Remove(oldSyn.InnovationNo); oldSyn.InputNeuron.OutputSynapses.Remove(oldSyn); oldSyn.OutputNeuron.InputSynapses.Remove(oldSyn); Neuron neuron = new Neuron(NeuronInnovationNo); Synapse newSyn1 = new Synapse(oldSyn.InputNeuron, neuron, SynapseInnovationNo); newSyn1.Weight = 1; Synapse newSyn2 = new Synapse(neuron, oldSyn.OutputNeuron, SynapseInnovationNo); newSyn2.Weight = oldSyn.Weight; HiddenLayers.Add(neuron.InnovationNo, neuron); AllSynapses.Add(newSyn1.InnovationNo, newSyn1); AllSynapses.Add(newSyn2.InnovationNo, newSyn2); }
public float Distance(NEAT partner) { if (partner == null) { Debug.Log("NULL partner"); Debug.Break(); } //var synapseIenumerator = AllSynapses.GetEnumerator(); //var partnerSynapseIenumerator = partner.AllSynapses.GetEnumerator(); //synapseIenumerator.MoveNext(); float result = 0; if (AllSynapses.Any() || partner.AllSynapses.Any()) { int disjointGenes = 0; int excessGenes = 0; float weightDifference = 0; float N = Math.Max(AllSynapses.Count, partner.AllSynapses.Count); disjointGenes = 2 * AllSynapses.Keys.Union(partner.AllSynapses.Keys).Count() - AllSynapses.Count - partner.AllSynapses.Count; foreach (var synapseInnovationNo in AllSynapses.Keys.Intersect(partner.AllSynapses.Keys)) { weightDifference += Math.Abs((float)(AllSynapses[synapseInnovationNo].Weight - partner.AllSynapses[synapseInnovationNo].Weight)); //if (Math.Abs((float)(AllSynapses[synapseInnovationNo].Weight - partner.AllSynapses[synapseInnovationNo].Weight)) > Constants.Con.synapse_difference_threshold) // disjointGenes++; } result += (Constants.Con.c1 * excessGenes + Constants.Con.c2 * disjointGenes + Constants.Con.c3 * weightDifference) / N; } //if(HiddenLayers.Any() || partner.HiddenLayers.Any()) OutputLayer.Count > 0 always { int disjointGenes = 0; int excessGenes = 0; float weightDifference = 0; float N = Math.Max(HiddenLayers.Count, partner.HiddenLayers.Count) + OutputLayer.Count; foreach (var neuronPair in OutputLayer.Zip(partner.OutputLayer)) { weightDifference += Mathf.Abs((float)(neuronPair.Key.Bias - neuronPair.Value.Bias)); //if (Mathf.Abs((float)(neuronPair.Key.Bias - neuronPair.Value.Bias)) > Constants.Con.bias_difference_threshold) // disjointGenes++; } disjointGenes = 2 * HiddenLayers.Keys.Union(partner.HiddenLayers.Keys).Count() - HiddenLayers.Count - partner.HiddenLayers.Count; foreach (var neuronInnovationNo in HiddenLayers.Keys.Intersect(partner.HiddenLayers.Keys)) { weightDifference += Math.Abs((float)(HiddenLayers[neuronInnovationNo].Bias - partner.HiddenLayers[neuronInnovationNo].Bias)); //if (Math.Abs((float)(HiddenLayers[neuronInnovationNo].Bias - partner.HiddenLayers[neuronInnovationNo].Bias)) > Constants.Con.bias_difference_threshold) // disjointGenes++; } result += (Constants.Con.c1 * excessGenes + Constants.Con.c2 * disjointGenes + Constants.Con.c3 * weightDifference) / N; } return(result); //if (result < Constants.Con.delta_t) // return true; //return false; }
private void DelSynapse() { if (!AllSynapses.Any()) { return; } int tmp = RandomGenerator.Next(AllSynapses.Count); Synapse oldSyn = AllSynapses.Values.ToList()[tmp]; oldSyn.InputNeuron.OutputSynapses.Remove(oldSyn); oldSyn.OutputNeuron.InputSynapses.Remove(oldSyn); AllSynapses.Remove(oldSyn.InnovationNo); }