コード例 #1
0
        internal float Accrete(HistogramHeatPoint point, AggregationMethod aggregatioMethod, float percentile = 0f)
        {
            switch (aggregatioMethod)
            {
            case AggregationMethod.Increment:
                return(point.histogram.Count);

            case AggregationMethod.Cumulative:
                return(point.histogram.Sum(x => (float)Convert.ToDecimal(x)));

            case AggregationMethod.Min:
                point.histogram.Sort();
                return(point.histogram[0]);

            case AggregationMethod.Max:
                point.histogram.Sort();
                return(point.histogram[point.histogram.Count - 1]);

            case AggregationMethod.First:
                return(point.first);

            case AggregationMethod.Last:
                return(point.last);

            case AggregationMethod.Average:
                return(point.histogram.Sum(x => (float)Convert.ToDecimal(x)) / point.histogram.Count);

            case AggregationMethod.Percentile:
                point.histogram.Sort();
                int percentileIdx = (int)((percentile / 100f) * point.histogram.Count);
                int finalIdx      = (percentileIdx >= point.histogram.Count - 1) ? point.histogram.Count - 1 : percentileIdx;
                return(point.histogram[finalIdx]);
            }
            return(0);
        }
コード例 #2
0
ファイル: TestExprAvedevNode.cs プロジェクト: ikvm/nesper
        public void TestAggregateFunction()
        {
            AggregationMethodFactory aggFactory = ValidatedNodeToTest.Factory;
            AggregationMethod        agg        = aggFactory.Make(SupportExprNodeFactory.MethodResService, -1, 1, 1);

            Assert.AreEqual(typeof(double?), agg.ValueType);

            Assert.IsNull(agg.Value);

            agg.Enter(82);
            Assert.AreEqual(0D, agg.Value);

            agg.Enter(78);
            Assert.AreEqual(2D, agg.Value);

            agg.Enter(70);
            double result = agg.Value.AsDouble();

            Assert.AreEqual("4.4444", result.ToString().Substring(0, 6));

            agg.Enter(58);
            Assert.AreEqual(8D, agg.Value);

            agg.Enter(42);
            Assert.AreEqual(12.8D, agg.Value);

            agg.Leave(82);
            Assert.AreEqual(12D, agg.Value);

            agg.Leave(58);
            result = agg.Value.AsDouble();
            Assert.AreEqual("14.2222", result.ToString().Substring(0, 7));
        }
コード例 #3
0
 public static AggregationMethod MakeDistinctAggregator(AggregationMethod aggregationMethod, bool hasFilter)
 {
     if (hasFilter)
     {
         return(new AggregatorDistinctValueFilter(aggregationMethod));
     }
     return(new AggregatorDistinctValue(aggregationMethod));
 }
コード例 #4
0
        private static MethodCallExpression AggCallExpression(AggregationMethod aggMethod, ParameterExpression sourceParameter, LambdaExpression lambda)
        {
            String methodName;

            switch (aggMethod)
            {
            case AggregationMethod.Average:
                methodName = nameof(Enumerable.Average);
                break;

            case AggregationMethod.CountDistinct:
                return(CountDistinctExpression(sourceParameter, lambda));

            case AggregationMethod.Max:
                methodName = nameof(Enumerable.Max);
                break;

            case AggregationMethod.Min:
                methodName = nameof(Enumerable.Min);
                break;

            case AggregationMethod.Sum:
                methodName = nameof(Enumerable.Sum);
                break;

            default:
                throw new NotSupportedException();
            }

            MethodInfo closeMethod;
            MethodInfo openMethod = OeMethodInfoHelper.GetAggMethodInfo(methodName, lambda.ReturnType);

            if (openMethod == null)
            {
                Func <IEnumerable <Object>, Func <Object, Object>, Object> aggFunc;
                switch (aggMethod)
                {
                case AggregationMethod.Max:
                    aggFunc = Enumerable.Max <Object, Object>;
                    break;

                case AggregationMethod.Min:
                    aggFunc = Enumerable.Min <Object, Object>;
                    break;

                default:
                    throw new InvalidOperationException($"Enumerable.{methodName} not found");;
                }
                openMethod  = aggFunc.GetMethodInfo().GetGenericMethodDefinition();
                closeMethod = openMethod.MakeGenericMethod(lambda.Parameters[0].Type, lambda.ReturnType);
            }
            else
            {
                closeMethod = openMethod.MakeGenericMethod(lambda.Parameters[0].Type);
            }

            return(Expression.Call(closeMethod, sourceParameter, lambda));
        }
コード例 #5
0
        /// <summary>
        /// Create an AggregateExpressionToken.
        /// </summary>
        /// <param name="expression">The aggregate expression.</param>
        /// <param name="withVerb">The aggregation method.</param>
        /// <param name="alias">The alias for this query token.</param>
        public AggregateExpressionToken(QueryToken expression, AggregationMethod withVerb, string alias)
        {
            ExceptionUtils.CheckArgumentNotNull(expression, "expression");
            ExceptionUtils.CheckArgumentNotNull(alias, "alias");

            this.expression = expression;
            this.method     = withVerb;
            this.alias      = alias;
        }
コード例 #6
0
 public AggregationMethod[] NewAggregatorsInternal(AggregationMethodFactory[] prototypes, int agentInstanceId)
 {
     AggregationMethod[] row = new AggregationMethod[prototypes.Length];
     for (int i = 0; i < prototypes.Length; i++)
     {
         row[i] = prototypes[i].Make(this, agentInstanceId, -1, i);
     }
     return(row);
 }
コード例 #7
0
        public AggregationMethod Make()
        {
            AggregationMethod method = AggregationFunctionFactory.NewAggregator();

            if (!Parent.IsDistinct)
            {
                return(method);
            }
            return(AggregationMethodFactoryUtil.MakeDistinctAggregator(method, false));
        }
コード例 #8
0
        public AggregationMethod Make(MethodResolutionService methodResolutionService, int agentInstanceId, int groupId, int aggregationId)
        {
            AggregationMethod method = _aggregationFunctionFactory.NewAggregator();

            if (!_parent.IsDistinct)
            {
                return(method);
            }
            return(methodResolutionService.MakeDistinctAggregator(agentInstanceId, groupId, aggregationId, method, _aggregatedValueType, false));
        }
コード例 #9
0
        public static AggregationMethod[] NewAggregators(AggregationMethodFactory[] prototypes)
        {
            var row = new AggregationMethod[prototypes.Length];

            for (int i = 0; i < prototypes.Length; i++)
            {
                row[i] = prototypes[i].Make();
            }
            return(row);
        }
コード例 #10
0
        public AggregationMethod Make()
        {
            AggregationMethod method = MakeMinMaxAggregator(Parent.MinMaxTypeEnum, Type, HasDataWindows, Parent.HasFilter);

            if (!Parent.IsDistinct)
            {
                return(method);
            }
            return(AggregationMethodFactoryUtil.MakeDistinctAggregator(method, Parent.HasFilter));
        }
コード例 #11
0
        public AggregationMethod Make()
        {
            AggregationMethod method = MakeSumAggregator(InputValueType, Parent.HasFilter);

            if (!Parent.IsDistinct)
            {
                return(method);
            }
            return(AggregationMethodFactoryUtil.MakeDistinctAggregator(method, Parent.HasFilter));
        }
コード例 #12
0
        public AggregationMethod Make()
        {
            AggregationMethod method = MakeCountAggregator(IgnoreNulls, Parent.HasFilter);

            if (!Parent.IsDistinct)
            {
                return(method);
            }
            return(AggregationMethodFactoryUtil.MakeDistinctAggregator(method, Parent.HasFilter));
        }
コード例 #13
0
        public AggregationMethod Make(MethodResolutionService methodResolutionService, int agentInstanceId, int groupId, int aggregationId)
        {
            AggregationMethod method = methodResolutionService.MakeAvedevAggregator(agentInstanceId, groupId, aggregationId, _parent.HasFilter);

            if (!_parent.IsDistinct)
            {
                return(method);
            }
            return(methodResolutionService.MakeDistinctAggregator(agentInstanceId, groupId, aggregationId, method, _aggregatedValueType, _parent.HasFilter));
        }
コード例 #14
0
        public AggregationMethod Make(MethodResolutionService methodResolutionService, int agentInstanceId, int groupId, int aggregationId)
        {
            AggregationMethod method = methodResolutionService.MakeNthAggregator(agentInstanceId, groupId, aggregationId, _childType, _size + 1);

            if (!_parent.IsDistinct)
            {
                return(method);
            }
            return(methodResolutionService.MakeDistinctAggregator(agentInstanceId, groupId, aggregationId, method, _childType, false));
        }
コード例 #15
0
        public AggregationMethod Make()
        {
            AggregationMethod method = MakeStddevAggregator(Parent.HasFilter);

            if (!Parent.IsDistinct)
            {
                return(method);
            }
            return(AggregationMethodFactoryUtil.MakeDistinctAggregator(method, Parent.HasFilter));
        }
コード例 #16
0
        public AggregationMethod Make()
        {
            AggregationMethod method = MakeAvgAggregator(ChildType, Parent.HasFilter, OptionalMathContext);

            if (!Parent.IsDistinct)
            {
                return(method);
            }
            return(AggregationMethodFactoryUtil.MakeDistinctAggregator(method, Parent.HasFilter));
        }
コード例 #17
0
        /// <summary>
        /// Create a AggregateExpression.
        /// </summary>
        /// <param name="expression">The aggregation expression.</param>
        /// <param name="method">The <see cref="AggregationMethod"/>.</param>
        /// <param name="alias">The aggregation alias.</param>
        /// <param name="typeReference">The <see cref="IEdmTypeReference"/> of this aggregate expression.</param>
        public AggregateExpression(SingleValueNode expression, AggregationMethod method, string alias, IEdmTypeReference typeReference)
        {
            ExceptionUtils.CheckArgumentNotNull(expression, "expression");
            ExceptionUtils.CheckArgumentNotNull(alias, "alias");
            ExceptionUtils.CheckArgumentNotNull(typeReference, "typeReference");

            this.expression = expression;
            this.method = method;
            this.alias = alias;
            this.typeReference = typeReference;
        }
コード例 #18
0
        /// <summary>
        /// Create a AggregateExpression.
        /// </summary>
        /// <param name="expression">The aggregation expression.</param>
        /// <param name="method">The <see cref="AggregationMethod"/>.</param>
        /// <param name="alias">The aggregation alias.</param>
        /// <param name="typeReference">The <see cref="IEdmTypeReference"/> of this aggregate expression.</param>
        public AggregateExpression(SingleValueNode expression, AggregationMethod method, string alias, IEdmTypeReference typeReference)
        {
            ExceptionUtils.CheckArgumentNotNull(expression, "expression");
            ExceptionUtils.CheckArgumentNotNull(alias, "alias");
            ExceptionUtils.CheckArgumentNotNull(typeReference, "typeReference");

            this.expression    = expression;
            this.method        = method;
            this.alias         = alias;
            this.typeReference = typeReference;
        }
コード例 #19
0
        public Expression CallEnumerableFirstOrLast(Expression allProjectedRows, AggregationMethod aggregationMethod, Type elementType)
        {
            // Enumerable.FirstOrDefault<TRowDataType>(allProjectedRows)
            var methodName            = aggregationMethod == AggregationMethod.first ? "FirstOrDefault" : "LastOrDefault";
            var firstOrLastMethodInfo = typeof(Enumerable)
                                        .GetMethods(BindingFlags.Public | BindingFlags.Static)
                                        .Single(mi => mi.Name == methodName && mi.GetParameters().Length == 1)
                                        .MakeGenericMethod(elementType);

            return(Expression.Call(firstOrLastMethodInfo, allProjectedRows));
        }
コード例 #20
0
        /// <summary>
        /// Create a PropertyAggregateExpression.
        /// </summary>
        /// <param name="expression">The aggregation expression.</param>
        /// <param name="method">The <see cref="AggregationMethod"/>.</param>
        /// <param name="alias">The aggregation alias.</param>
        /// <param name="typeReference">The <see cref="IEdmTypeReference"/> of this aggregate expression.</param>
        public AggregateExpression(SingleValueNode expression, AggregationMethod method, string alias, IEdmTypeReference typeReference)
            : base(AggregateExpressionKind.PropertyAggregate, alias)
        {
            ExceptionUtils.CheckArgumentNotNull(expression, "expression");
            ExceptionUtils.CheckArgumentNotNull(alias, "alias");

            this.expression = expression;
            this.method     = method;

            //// TypeReference is null for dynamic properties
            this.typeReference = typeReference;
        }
コード例 #21
0
ファイル: AggregatorTests.cs プロジェクト: Apollo3zehn/Nexus
        public void CanAggregate2(AggregationMethod method, double nanLimit, int[] data, byte[] status, double expected)
        {
            //// Arrange
            //var command = new AggregationService(1, NullLogger.Instance, LoggerFactory.Create(_ => { }));
            //var kernelSize = data.Length;
            //var config = new AggregationUnit() { Method = method, Argument = "360" };

            //// Act
            //var actual = command.ApplyAggregationFunction(config, kernelSize, data, status, nanLimit, NullLogger.Instance);

            //// Assert
            //Assert.Equal(expected, actual[0]);
        }
コード例 #22
0
        private string getTransformation(AggregationMethod m)
        {
            switch (m)
            {
            case AggregationMethod.Average: return("average");

            case AggregationMethod.CountDistinct: return("countdistinct");

            case AggregationMethod.Sum: return("sum");

            case AggregationMethod.Min: return("min");

            default: return("max");
            }
        }
コード例 #23
0
        private static MethodCallExpression AggCallExpression(AggregationMethod aggMethod, ParameterExpression sourceParameter, LambdaExpression lambda)
        {
            String methodName;

            switch (aggMethod)
            {
            case AggregationMethod.Average:
                methodName = nameof(Enumerable.Average);
                break;

            case AggregationMethod.CountDistinct:
                return(CountDistinctExpression(sourceParameter, lambda));

            case AggregationMethod.Max:
                methodName = nameof(Enumerable.Max);
                break;

            case AggregationMethod.Min:
                methodName = nameof(Enumerable.Min);
                break;

            case AggregationMethod.Sum:
                methodName = nameof(Enumerable.Sum);
                break;

            case AggregationMethod.VirtualPropertyCount:
                return(CountExpression(sourceParameter));

            default:
                throw new NotSupportedException();
            }

            MethodInfo closeMethod;
            MethodInfo openMethod = OeMethodInfoHelper.GetAggMethodInfo(methodName, lambda.ReturnType);

            if (openMethod.GetGenericArguments().Length == 1)
            {
                closeMethod = openMethod.MakeGenericMethod(lambda.Parameters[0].Type);
            }
            else
            {
                closeMethod = openMethod.MakeGenericMethod(lambda.Parameters[0].Type, lambda.ReturnType);
            }

            return(Expression.Call(closeMethod, sourceParameter, lambda));
        }
コード例 #24
0
        public CellValueCalculator FirstOrLast(AggregationMethod aggregationMethod, FormulaExpressionsCompiler compiler)
        {
            var allRowsCalculator = All(compiler);
            var key = $"{aggregationMethod}:{CalculateExpression}";

            return(new CellValueCalculator(
                       ResultType,
                       GetPrecalculatedAggregatedValue(ResultType, compiler.Parameters, key),
                       allRowsCalculator.AggregatedValuesCalculators.Insert(
                           0,
                           KeyValuePair.Create(
                               key,
                               compiler.CallEnumerableFirstOrLast(
                                   allRowsCalculator.CalculateExpression,
                                   aggregationMethod,
                                   ResultType))),
                       canBeAggregated: true));
        }
コード例 #25
0
        /// <summary>
        /// Converts a <see cref="AggregationMethod"/> to a string.
        /// </summary>
        /// <param name="method">The aggregation method to convert.</param>
        /// <returns>The converted string.</returns>
        public static string ToString(AggregationMethod method)
        {
            var ret = "";

            switch (method)
            {
            case AggregationMethod.Average:
                ret = "avg";
                break;

            case AggregationMethod.Sum:
                ret = "sum";
                break;

            case AggregationMethod.EndOfPeriod:
                ret = "eop";
                break;
            }
            return(ret);
        }
コード例 #26
0
        public AggregationServiceMatchRecognize MakeService(AgentInstanceContext agentInstanceContext)
        {
            var aggregatorsEachStream = new AggregationMethod[_factoryEachStream.Length][];

            int count = 0;

            for (int stream = 0; stream < _factoryEachStream.Length; stream++)
            {
                AggregationMethodFactory[] thatStream = _factoryEachStream[stream];
                if (thatStream != null)
                {
                    aggregatorsEachStream[stream] = new AggregationMethod[thatStream.Length];
                    for (int aggId = 0; aggId < thatStream.Length; aggId++)
                    {
                        aggregatorsEachStream[stream][aggId] =
                            _factoryEachStream[stream][aggId].Make(
                                agentInstanceContext.StatementContext.MethodResolutionService,
                                agentInstanceContext.AgentInstanceId, 0, aggId);
                        count++;
                    }
                }
            }

            var aggregatorsAll = new AggregationMethod[count];

            count = 0;
            for (int stream = 0; stream < _factoryEachStream.Length; stream++)
            {
                if (_factoryEachStream[stream] != null)
                {
                    for (int aggId = 0; aggId < _factoryEachStream[stream].Length; aggId++)
                    {
                        aggregatorsAll[count] = aggregatorsEachStream[stream][aggId];
                        count++;
                    }
                }
            }

            return(new AggregationServiceMatchRecognizeImpl(_evaluatorsEachStream, aggregatorsEachStream, aggregatorsAll));
        }
コード例 #27
0
ファイル: Fred.Extras.cs プロジェクト: cuda/Xaye.Fred
        /// <summary>
        /// Get the observations or data values for an economic data series. Corresponds to http://api.stlouisfed.org/fred/series/observations
        /// </summary>
        /// <param name="seriesId">The id for a series.</param>
        /// <param name="fileType">The type of file to send.</param>
        /// <param name="filename">The where to save the file.</param>
        /// <param name="observationStart">The start of the observation period.</param>
        /// <param name="observationEnd">The end of the observation period.</param>
        /// <param name="realtimeStart">The start of the real-time period.</param>
        /// <param name="realtimeEnd">The end of the real-time period.</param>
        /// <param name="vintageDates">A comma separated string of YYYY-MM-DD formatted dates in history (e.g. 2000-01-01,2005-02-24).
        ///  Vintage dates are used to download data as it existed on these specified dates in history. Vintage dates can be 
        ///  specified instead of a real-time period using realtime_start and realtime_end.
        ///
        /// Sometimes it may be useful to enter a vintage date that is not a date when the data values were revised. 
        /// For instance you may want to know the latest available revisions on 2001-09-11 (World Trade Center and 
        /// Pentagon attacks) or as of a Federal Open Market Committee (FOMC) meeting date. Entering a vintage date is 
        /// also useful to compare series on different releases with different release dates.</param>
        /// <param name="limit">The maximum number of results to return. An integer between 1 and 100000, optional, default: 100000</param>
        /// <param name="offset">non-negative integer, optional, default: 0</param>
        /// <param name="order">Sort results is ascending or descending observation_date order.</param>
        /// <param name="transformation">Type of data value transformation.</param>
        /// <param name="frequency">An optional parameter that indicates a lower frequency to aggregate values to. 
        /// The FRED frequency aggregation feature converts higher frequency data series into lower frequency data series 
        /// (e.g. converts a monthly data series into an annual data series). In FRED, the highest frequency data is daily, 
        /// and the lowest frequency data is annual. There are 3 aggregation methods available- average, sum, and end of period.</param>
        /// <param name="method">A key that indicates the aggregation method used for frequency aggregation.</param>
        /// <param name="outputType">Output type:
        /// 1. Observations by Real-Time Period
        /// 2. Observations by Vintage Date, All Observations
        /// 3. Observations by Vintage Date, New and Revised Observations Only
        /// 4.  Observations, Initial Release Only
        /// </param>
        /// <returns>Observations or data values for an economic data series.</returns>
        public void GetSeriesObservationsFile(string seriesId, FileType fileType, string filename,
            DateTime observationStart,
            DateTime observationEnd,
            DateTime realtimeStart,
            DateTime realtimeEnd,
            IEnumerable<DateTime> vintageDates, int limit = 100000,
            int offset = 0, SortOrder order = SortOrder.Ascending,
            Transformation transformation = Transformation.None,
            Frequency frequency = Frequency.None,
            AggregationMethod method = AggregationMethod.Average,
            OutputType outputType = OutputType.RealTime)
        {
            var extension = GetExtension(filename);

            if (fileType != FileType.Xml && fileType != FileType.Json && !extension.Equals(".zip", StringComparison.OrdinalIgnoreCase))
            {
                filename += ".zip";
            }

            GetSeriesObservationsStreamAsync(seriesId, fileType, new FileStream(filename, FileMode.Create), observationStart, observationEnd,
                realtimeStart, realtimeEnd, vintageDates, limit, offset, order, transformation, frequency, method, outputType).RunSynchronously();
        }
コード例 #28
0
ファイル: Fred.Extras.cs プロジェクト: skriss/Xaye.Fred
        /// <summary>
        /// Get the observations or data values for an economic data series. Corresponds to http://api.stlouisfed.org/fred/series/observations
        /// </summary>
        /// <param name="seriesId">The id for a series.</param>
        /// <param name="fileType">The type of file to send.</param>
        /// <param name="filename">The where to save the file.</param>
        /// <param name="observationStart">The start of the observation period.</param>
        /// <param name="observationEnd">The end of the observation period.</param>
        /// <param name="realtimeStart">The start of the real-time period.</param>
        /// <param name="realtimeEnd">The end of the real-time period.</param>
        /// <param name="vintageDates">A comma separated string of YYYY-MM-DD formatted dates in history (e.g. 2000-01-01,2005-02-24).
        ///  Vintage dates are used to download data as it existed on these specified dates in history. Vintage dates can be
        ///  specified instead of a real-time period using realtime_start and realtime_end.
        ///
        /// Sometimes it may be useful to enter a vintage date that is not a date when the data values were revised.
        /// For instance you may want to know the latest available revisions on 2001-09-11 (World Trade Center and
        /// Pentagon attacks) or as of a Federal Open Market Committee (FOMC) meeting date. Entering a vintage date is
        /// also useful to compare series on different releases with different release dates.</param>
        /// <param name="limit">The maximum number of results to return. An integer between 1 and 100000, optional, default: 100000</param>
        /// <param name="offset">non-negative integer, optional, default: 0</param>
        /// <param name="order">Sort results is ascending or descending observation_date order.</param>
        /// <param name="transformation">Type of data value transformation.</param>
        /// <param name="frequency">An optional parameter that indicates a lower frequency to aggregate values to.
        /// The FRED frequency aggregation feature converts higher frequency data series into lower frequency data series
        /// (e.g. converts a monthly data series into an annual data series). In FRED, the highest frequency data is daily,
        /// and the lowest frequency data is annual. There are 3 aggregation methods available- average, sum, and end of period.</param>
        /// <param name="method">A key that indicates the aggregation method used for frequency aggregation.</param>
        /// <param name="outputType">Output type:
        /// 1. Observations by Real-Time Period
        /// 2. Observations by Vintage Date, All Observations
        /// 3. Observations by Vintage Date, New and Revised Observations Only
        /// 4.  Observations, Initial Release Only
        /// </param>
        /// <returns>Observations or data values for an economic data series.</returns>
        public void GetSeriesObservationsFile(string seriesId, FileType fileType, string filename,
                                              DateTime observationStart,
                                              DateTime observationEnd,
                                              DateTime realtimeStart,
                                              DateTime realtimeEnd,
                                              IEnumerable <DateTime> vintageDates, int limit = 100000,
                                              int offset = 0, SortOrder order = SortOrder.Ascending,
                                              Transformation transformation = Transformation.None,
                                              Frequency frequency           = Frequency.None,
                                              AggregationMethod method      = AggregationMethod.Average,
                                              OutputType outputType         = OutputType.RealTime)
        {
            var extension = GetExtension(filename);

            if (fileType != FileType.Xml && fileType != FileType.Json && !extension.Equals(".zip", StringComparison.OrdinalIgnoreCase))
            {
                filename += ".zip";
            }

            GetSeriesObservationsStreamAsync(seriesId, fileType, new FileStream(filename, FileMode.Create), observationStart, observationEnd,
                                             realtimeStart, realtimeEnd, vintageDates, limit, offset, order, transformation, frequency, method, outputType).RunSynchronously();
        }
コード例 #29
0
        private double[] ApplyAggregationFunction(AggregationMethod method,
                                                  string argument,
                                                  int kernelSize,
                                                  double[] data,
                                                  double nanLimit,
                                                  ILogger logger)
        {
            var targetDatasetLength = data.Length / kernelSize;
            var result = new double[targetDatasetLength];

            switch (method)
            {
            case AggregationMethod.Mean:

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, x, kernelSize);
                    var isHighQuality = (chunkData.Length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        result[x] = ArrayStatistics.Mean(chunkData);
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            case AggregationMethod.MeanPolar:

                double[] sin = new double[targetDatasetLength];
                double[] cos = new double[targetDatasetLength];
                double   limit;

                if (argument.Contains("*PI"))
                {
                    limit = Double.Parse(argument.Replace("*PI", "")) * Math.PI;
                }
                else
                {
                    limit = Double.Parse(argument);
                }

                var factor = 2 * Math.PI / limit;

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, x, kernelSize);
                    var length        = chunkData.Length;
                    var isHighQuality = (length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        for (int i = 0; i < chunkData.Length; i++)
                        {
                            sin[x] += Math.Sin(chunkData[i] * factor);
                            cos[x] += Math.Cos(chunkData[i] * factor);
                        }

                        result[x] = Math.Atan2(sin[x], cos[x]) / factor;

                        if (result[x] < 0)
                        {
                            result[x] += limit;
                        }
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            case AggregationMethod.Min:

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, x, kernelSize);
                    var isHighQuality = (chunkData.Length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        result[x] = ArrayStatistics.Minimum(chunkData);
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            case AggregationMethod.Max:

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, x, kernelSize);
                    var isHighQuality = (chunkData.Length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        result[x] = ArrayStatistics.Maximum(chunkData);
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            case AggregationMethod.Std:

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, x, kernelSize);
                    var isHighQuality = (chunkData.Length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        result[x] = ArrayStatistics.StandardDeviation(chunkData);
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            case AggregationMethod.Rms:

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, x, kernelSize);
                    var isHighQuality = (chunkData.Length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        result[x] = ArrayStatistics.RootMeanSquare(chunkData);
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            case AggregationMethod.SampleAndHold:

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, x, kernelSize);
                    var isHighQuality = (chunkData.Length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        result[x] = chunkData.First();
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            case AggregationMethod.Sum:

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, x, kernelSize);
                    var isHighQuality = (chunkData.Length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        result[x] = Vector <double> .Build.Dense(chunkData).Sum();
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            default:

                logger.LogWarning($"The aggregation method '{method}' is not known. Skipping period.");

                break;
            }

            return(result);
        }
コード例 #30
0
        private double[] ApplyAggregationFunction <T>(AggregationMethod method,
                                                      string argument,
                                                      int kernelSize,
                                                      T[] data,
                                                      byte[] status,
                                                      double nanLimit,
                                                      ILogger logger) where T : unmanaged
        {
            var targetDatasetLength = data.Length / kernelSize;
            var result = new double[targetDatasetLength];

            switch (method)
            {
            case AggregationMethod.MinBitwise:

                T[] bitField_and = new T[targetDatasetLength];

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, status, x, kernelSize);
                    var length        = chunkData.Length;
                    var isHighQuality = (length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        for (int i = 0; i < length; i++)
                        {
                            if (i == 0)
                            {
                                bitField_and[x] = GenericBitOr <T> .BitOr(bitField_and[x], chunkData[i]);
                            }
                            else
                            {
                                bitField_and[x] = GenericBitAnd <T> .BitAnd(bitField_and[x], chunkData[i]);
                            }
                        }

                        result[x] = Convert.ToDouble(bitField_and[x]);
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            case AggregationMethod.MaxBitwise:

                T[] bitField_or = new T[targetDatasetLength];

                Parallel.For(0, targetDatasetLength, x =>
                {
                    var chunkData     = this.GetNaNFreeData(data, status, x, kernelSize);
                    var length        = chunkData.Length;
                    var isHighQuality = (length / (double)kernelSize) >= nanLimit;

                    if (isHighQuality)
                    {
                        for (int i = 0; i < length; i++)
                        {
                            bitField_or[x] = GenericBitOr <T> .BitOr(bitField_or[x], chunkData[i]);
                        }

                        result[x] = Convert.ToDouble(bitField_or[x]);
                    }
                    else
                    {
                        result[x] = double.NaN;
                    }
                });

                break;

            default:
                logger.LogWarning($"The aggregation method '{method}' is not known. Skipping period.");
                break;
            }

            return(result);
        }
コード例 #31
0
        private static void VerifyAggregateExpressionToken(string expectedEndPathIdentifier, AggregationMethod expectedVerb, string expectedAlias, AggregateExpressionToken actual)
        {
            actual.Expression.Should().NotBeNull();

            var expression = actual.Expression as EndPathToken;

            expression.Should().NotBeNull();
            expression.Identifier.Should().Be(expectedEndPathIdentifier);

            actual.Method.Should().Be(expectedVerb);
            actual.Alias.Should().Be(expectedAlias);
        }
コード例 #32
0
ファイル: FredAsync.cs プロジェクト: RoyLai/Xaye.Fred
        /// <summary>
        /// Get the observations or data values for an economic data series. Corresponds to http://api.stlouisfed.org/fred/series/observations
        /// </summary>
        /// <param name="seriesId">The id for a series.</param>
        /// <param name="fileType">The type of file to send.</param>
        /// <param name="filename">The where to save the file.</param>
        /// <param name="observationStart">The start of the observation period.</param>
        /// <param name="observationEnd">The end of the observation period.</param>
        /// <param name="realtimeStart">The start of the real-time period.</param>
        /// <param name="realtimeEnd">The end of the real-time period.</param>
        /// <param name="vintageDates">A comma separated string of YYYY-MM-DD formatted dates in history (e.g. 2000-01-01,2005-02-24).
        ///  Vintage dates are used to download data as it existed on these specified dates in history. Vintage dates can be 
        ///  specified instead of a real-time period using realtime_start and realtime_end.
        ///
        /// Sometimes it may be useful to enter a vintage date that is not a date when the data values were revised. 
        /// For instance you may want to know the latest available revisions on 2001-09-11 (World Trade Center and 
        /// Pentagon attacks) or as of a Federal Open Market Committee (FOMC) meeting date. Entering a vintage date is 
        /// also useful to compare series on different releases with different release dates.</param>
        /// <param name="limit">The maximum number of results to return. An integer between 1 and 100000, optional, default: 100000</param>
        /// <param name="offset">non-negative integer, optional, default: 0</param>
        /// <param name="order">Sort results is ascending or descending observation_date order.</param>
        /// <param name="transformation">Type of data value transformation.</param>
        /// <param name="frequency">An optional parameter that indicates a lower frequency to aggregate values to. 
        /// The FRED frequency aggregation feature converts higher frequency data series into lower frequency data series 
        /// (e.g. converts a monthly data series into an annual data series). In FRED, the highest frequency data is daily, 
        /// and the lowest frequency data is annual. There are 3 aggregation methods available- average, sum, and end of period.</param>
        /// <param name="method">A key that indicates the aggregation method used for frequency aggregation.</param>
        /// <param name="outputType">Output type:
        /// 1. Observations by Real-Time Period
        /// 2. Observations by Vintage Date, All Observations
        /// 3. Observations by Vintage Date, New and Revised Observations Only
        /// 4.  Observations, Initial Release Only
        /// </param>
        /// <returns>Observations or data values for an economic data series.</returns>
        public async Task GetSeriesObservationsFileAsync(string seriesId, FileType fileType, string filename,
                                              DateTime observationStart,
                                              DateTime observationEnd,
                                              DateTime realtimeStart,
                                              DateTime realtimeEnd,
                                              IEnumerable<DateTime> vintageDates, int limit = 100000,
                                              int offset = 0, SortOrder order = SortOrder.Ascending,
                                              Transformation transformation = Transformation.None,
                                              Frequency frequency = Frequency.None,
                                              AggregationMethod method = AggregationMethod.Average,
                                              OutputType outputType = OutputType.RealTime)
        {
            var vintageString = vintageDates.Aggregate(string.Empty,
                                                       (current, vintageDate) =>
                                                       current + (vintageDate.ToFredDateString() + ","));
            if (vintageString.Length > 0)
            {
                vintageString = vintageString.Substring(0, vintageString.Length - 1);
            }

            var realtimeStartStr = (vintageString.Length == 0) ? realtimeStart.ToFredDateString() : string.Empty;
            var realtimeEndStr = (vintageString.Length == 0) ? realtimeEnd.ToFredDateString() : string.Empty;
            var url = String.Format(Urls.SeriesObservations, _key, seriesId, realtimeStartStr,
                                    realtimeEndStr, limit, offset, Extensions.ToString(order),
                                    observationStart.ToFredDateString(),
                                    observationEnd.ToFredDateString(),
                                    Extensions.ToString(transformation), Extensions.ToString(frequency),
                                    Extensions.ToString(method), Extensions.ToString(outputType),
                                    Extensions.ToString(fileType), vintageString);

            try
            {
                if (fileType != FileType.Xml && !Path.GetExtension(filename).Equals(".zip", StringComparison.OrdinalIgnoreCase))
                {
                    filename += ".zip";
                }
                await _downloader.DownloadFileAsync(url, filename);
            }
            catch (WebException exp)
            {
                var response = (HttpWebResponse)exp.Response;
                var buffer = new byte[response.ContentLength];
                response.GetResponseStream().Read(buffer, 0, buffer.Length);
                var xml = Encoding.UTF8.GetString(buffer);
                var start = xml.IndexOf("message=", StringComparison.OrdinalIgnoreCase);
                if (start < 0)
                {
                    throw;
                }
                start += 9;
                var end = xml.LastIndexOf("\"", StringComparison.OrdinalIgnoreCase);
                var message = xml.Substring(start, end - start);
                throw new FredExecption(message, exp);
            }
        }
コード例 #33
0
 public void AAggNoAccessEnterLeave(bool enter, int index, AggregationMethod aggregationMethod)
 {
 }
コード例 #34
0
ファイル: FredAsync.cs プロジェクト: RoyLai/Xaye.Fred
        /// <summary>
        /// Get the observations or data values for an economic data series. Corresponds to http://api.stlouisfed.org/fred/series/observations
        /// </summary>
        /// <param name="seriesId">The id for a series.</param>
        /// <param name="observationStart">The start of the observation period.</param>
        /// <param name="observationEnd">The end of the observation period.</param>
        /// <param name="realtimeStart">The start of the real-time period.</param>
        /// <param name="realtimeEnd">The end of the real-time period.</param>
        /// <param name="vintageDates">A comma separated string of YYYY-MM-DD formatted dates in history (e.g. 2000-01-01,2005-02-24).
        ///  Vintage dates are used to download data as it existed on these specified dates in history. Vintage dates can be 
        ///  specified instead of a real-time period using realtime_start and realtime_end.
        ///
        /// Sometimes it may be useful to enter a vintage date that is not a date when the data values were revised. 
        /// For instance you may want to know the latest available revisions on 2001-09-11 (World Trade Center and 
        /// Pentagon attacks) or as of a Federal Open Market Committee (FOMC) meeting date. Entering a vintage date is 
        /// also useful to compare series on different releases with different release dates.</param>
        /// <param name="limit">The maximum number of results to return. An integer between 1 and 100000, optional, default: 100000</param>
        /// <param name="offset">non-negative integer, optional, default: 0</param>
        /// <param name="order">Sort results is ascending or descending observation_date order.</param>
        /// <param name="transformation">Type of data value transformation.</param>
        /// <param name="frequency">An optional parameter that indicates a lower frequency to aggregate values to. 
        /// The FRED frequency aggregation feature converts higher frequency data series into lower frequency data series 
        /// (e.g. converts a monthly data series into an annual data series). In FRED, the highest frequency data is daily, 
        /// and the lowest frequency data is annual. There are 3 aggregation methods available- average, sum, and end of period.</param>
        /// <param name="method">A key that indicates the aggregation method used for frequency aggregation.</param>
        /// <param name="outputType">Output type:
        /// 1. Observations by Real-Time Period
        /// 2. Observations by Vintage Date, All Observations
        /// 3. Observations by Vintage Date, New and Revised Observations Only
        /// 4.  Observations, Initial Release Only
        /// </param>
        /// <returns>Observations or data values for an economic data series.</returns>
        public async Task<IEnumerable<Observation>> GetSeriesObservationsAsync(string seriesId, DateTime observationStart,
                                                              DateTime observationEnd, DateTime realtimeStart,
                                                              DateTime realtimeEnd,
                                                              IEnumerable<DateTime> vintageDates, int limit = 100000,
                                                              int offset = 0, SortOrder order = SortOrder.Ascending,
                                                              Transformation transformation = Transformation.None,
                                                              Frequency frequency = Frequency.None,
                                                              AggregationMethod method = AggregationMethod.Average,
                                                              OutputType outputType = OutputType.RealTime)
        {
            var vintageString = vintageDates.Aggregate(string.Empty,
                                                       (current, vintageDate) =>
                                                       current + (vintageDate.ToFredDateString() + ","));
            if (vintageString.Length > 0)
            {
                vintageString = vintageString.Substring(0, vintageString.Length - 1);
            }

            var realtimeStartStr = (vintageString.Length == 0) ? realtimeStart.ToFredDateString() : string.Empty;
            var realtimeEndStr = (vintageString.Length == 0) ? realtimeEnd.ToFredDateString() : string.Empty;
            var url = String.Format(Urls.SeriesObservations, _key, seriesId, realtimeStartStr,
                                    realtimeEndStr, limit, offset, Extensions.ToString(order),
                                    observationStart.ToFredDateString(),
                                    observationEnd.ToFredDateString(),
                                    Extensions.ToString(transformation), Extensions.ToString(frequency),
                                    Extensions.ToString(method), Extensions.ToString(outputType), "xml", vintageString);

            var root = await GetRootAsync(url);
            return root.Elements("observation").Select(
                element =>
                {
                    var valElm = element.Attribute("value");
                    double? value = null;
                    if (valElm != null && !string.IsNullOrWhiteSpace(valElm.Value))
                    {
                        double dOut;
                        var success = double.TryParse(valElm.Value, out dOut);
                        if (success)
                        {
                            value = dOut;
                        }

                    }

                    return new Observation
                    {
                        RealtimeStart = element.Attribute("realtime_start").Value.ToFredDate(),
                        RealtimeEnd = element.Attribute("realtime_end").Value.ToFredDate(),
                        Date = element.Attribute("date").Value.ToFredDate(),
                        Value = value
                    };
                }
                ).ToList();
        }
コード例 #35
0
ファイル: Fred.cs プロジェクト: cuda/Xaye.Fred
 /// <summary>
 /// Get the observations or data values for an economic data series. Corresponds to http://api.stlouisfed.org/fred/series/observations
 /// </summary>
 /// <param name="seriesId">The id for a series.</param>
 /// <param name="observationStart">The start of the observation period.</param>
 /// <param name="observationEnd">The end of the observation period.</param>
 /// <param name="vintageDates">A comma separated string of YYYY-MM-DD formatted dates in history (e.g. 2000-01-01,2005-02-24).
 ///  Vintage dates are used to download data as it existed on these specified dates in history. Vintage dates can be 
 ///  specified instead of a real-time period using realtime_start and realtime_end.
 ///
 /// Sometimes it may be useful to enter a vintage date that is not a date when the data values were revised. 
 /// For instance you may want to know the latest available revisions on 2001-09-11 (World Trade Center and 
 /// Pentagon attacks) or as of a Federal Open Market Committee (FOMC) meeting date. Entering a vintage date is 
 /// also useful to compare series on different releases with different release dates.</param>
 /// <param name="limit">The maximum number of results to return. An integer between 1 and 100000, optional, default: 100000</param>
 /// <param name="offset">non-negative integer, optional, default: 0</param>
 /// <param name="order">Sort results is ascending or descending observation_date order.</param>
 /// <param name="transformation">Type of data value transformation.</param>
 /// <param name="frequency">An optional parameter that indicates a lower frequency to aggregate values to. 
 /// The FRED frequency aggregation feature converts higher frequency data series into lower frequency data series 
 /// (e.g. converts a monthly data series into an annual data series). In FRED, the highest frequency data is daily, 
 /// and the lowest frequency data is annual. There are 3 aggregation methods available- average, sum, and end of period.</param>
 /// <param name="method">A key that indicates the aggregation method used for frequency aggregation.</param>
 /// <param name="outputType">Output type:
 /// 1. Observations by Real-Time Period
 /// 2. Observations by Vintage Date, All Observations
 /// 3. Observations by Vintage Date, New and Revised Observations Only
 /// 4. Observations, Initial Release Only
 /// </param>
 /// <returns>Observations or data values for an economic data series.</returns>
 public Task<IEnumerable<Observation>> GetSeriesObservationsAsync(string seriesId, DateTime observationStart,
     DateTime observationEnd,
     IEnumerable<DateTime> vintageDates,
     int limit = 100000,
     int offset = 0, SortOrder order = SortOrder.Ascending,
     Transformation transformation = Transformation.None,
     Frequency frequency = Frequency.None,
     AggregationMethod method = AggregationMethod.Average,
     OutputType outputType = OutputType.RealTime)
 {
     var now = CstTime();
     return GetSeriesObservationsAsync(seriesId, observationStart, observationEnd, now, now, vintageDates, limit, offset, order, transformation, frequency, method, outputType);
 }
コード例 #36
0
ファイル: Fred.cs プロジェクト: cuda/Xaye.Fred
 /// <summary>
 /// Get the observations or data values for an economic data series. Corresponds to http://api.stlouisfed.org/fred/series/observations
 /// </summary>
 /// <param name="seriesId">The id for a series.</param>
 /// <param name="observationStart">The start of the observation period.</param>
 /// <param name="observationEnd">The end of the observation period.</param>
 /// <param name="realtimeStart">The start of the real-time period.</param>
 /// <param name="realtimeEnd">The end of the real-time period.</param>
 /// <param name="limit">The maximum number of results to return. An integer between 1 and 100000, optional, default: 100000</param>
 /// <param name="offset">non-negative integer, optional, default: 0</param>
 /// <param name="order">Sort results is ascending or descending observation_date order.</param>
 /// <param name="transformation">Type of data value transformation.</param>
 /// <param name="frequency">An optional parameter that indicates a lower frequency to aggregate values to. 
 /// The FRED frequency aggregation feature converts higher frequency data series into lower frequency data series 
 /// (e.g. converts a monthly data series into an annual data series). In FRED, the highest frequency data is daily, 
 /// and the lowest frequency data is annual. There are 3 aggregation methods available- average, sum, and end of period.</param>
 /// <param name="method">A key that indicates the aggregation method used for frequency aggregation.</param>
 /// <param name="outputType">Output type:
 /// 1. Observations by Real-Time Period
 /// 2. Observations by Vintage Date, All Observations
 /// 3. Observations by Vintage Date, New and Revised Observations Only
 /// 4. Observations, Initial Release Only
 /// </param>
 /// <returns>Observations or data values for an economic data series.</returns>
 public Task<IEnumerable<Observation>> GetSeriesObservationsAsync(string seriesId, DateTime observationStart,
     DateTime observationEnd, DateTime realtimeStart,
     DateTime realtimeEnd,
     int limit = 100000,
     int offset = 0, SortOrder order = SortOrder.Ascending,
     Transformation transformation = Transformation.None,
     Frequency frequency = Frequency.None,
     AggregationMethod method = AggregationMethod.Average,
     OutputType outputType = OutputType.RealTime)
 {
     return GetSeriesObservationsAsync(seriesId, observationStart, observationEnd, realtimeStart, realtimeEnd, Enumerable.Empty<DateTime>(), limit, offset, order, transformation, frequency, method, outputType);
 }
コード例 #37
0
ファイル: Fred.cs プロジェクト: cuda/Xaye.Fred
 /// <summary>
 /// Get the observations or data values for an economic data series. Corresponds to http://api.stlouisfed.org/fred/series/observations
 /// </summary>
 /// <param name="seriesId">The id for a series.</param>
 /// <param name="limit">The maximum number of results to return. An integer between 1 and 100000, optional, default: 100000</param>
 /// <param name="offset">non-negative integer, optional, default: 0</param>
 /// <param name="order">Sort results is ascending or descending observation_date order.</param>
 /// <param name="transformation">Type of data value transformation.</param>
 /// <param name="frequency">An optional parameter that indicates a lower frequency to aggregate values to. 
 /// The FRED frequency aggregation feature converts higher frequency data series into lower frequency data series 
 /// (e.g. converts a monthly data series into an annual data series). In FRED, the highest frequency data is daily, 
 /// and the lowest frequency data is annual. There are 3 aggregation methods available- average, sum, and end of period.</param>
 /// <param name="method">A key that indicates the aggregation method used for frequency aggregation.</param>
 /// <param name="outputType">Output type:
 /// 1. Observations by Real-Time Period
 /// 2. Observations by Vintage Date, All Observations
 /// 3. Observations by Vintage Date, New and Revised Observations Only
 /// 4. Observations, Initial Release Only
 /// </param>
 /// <returns>Observations or data values for an economic data series.</returns>
 public Task<IEnumerable<Observation>> GetSeriesObservationsAsync(string seriesId,
     int limit = 100000,
     int offset = 0, SortOrder order = SortOrder.Ascending,
     Transformation transformation = Transformation.None,
     Frequency frequency = Frequency.None,
     AggregationMethod method = AggregationMethod.Average,
     OutputType outputType = OutputType.RealTime)
 {
     var now = CstTime();
     return GetSeriesObservationsAsync(seriesId, new DateTime(1776, 07, 04), new DateTime(9999, 12, 31), now, now, Enumerable.Empty<DateTime>(), limit, offset, order, transformation, frequency, method, outputType);
 }
コード例 #38
0
ファイル: Extensions.cs プロジェクト: RoyLai/Xaye.Fred
 /// <summary>
 /// Converts a <see cref="AggregationMethod"/> to a string.
 /// </summary>
 /// <param name="method">The aggregation method to convert.</param>
 /// <returns>The converted string.</returns>
 public static string ToString(AggregationMethod method)
 {
     var ret = "";
     switch (method)
     {
             case AggregationMethod.Average:
             ret = "avg";
             break;
             case AggregationMethod.Sum:
             ret = "sum";
             break;
             case AggregationMethod.EndOfPeriod:
             ret = "eop";
             break;
     }
     return ret;
 }
コード例 #39
0
ファイル: ApplyBinder.cs プロジェクト: TomDu/odata.net
        private IEdmTypeReference CreateAggregateExpressionTypeReference(SingleValueNode expression, AggregationMethod withVerb)
        {
            var expressionType = expression.TypeReference;
            if (expressionType == null && aggregateExpressionsCache != null)
            {
                var openProperty = expression as SingleValueOpenPropertyAccessNode;
                if (openProperty != null)
                {
                    expressionType = GetTypeReferenceByPropertyName(openProperty.Name);
                }
            }

            switch (withVerb)
            {
                case AggregationMethod.Average:
                    var expressionPrimitiveKind = expressionType.PrimitiveKind();
                    switch (expressionPrimitiveKind)
                    {
                        case EdmPrimitiveTypeKind.Int32:
                        case EdmPrimitiveTypeKind.Int64:
                        case EdmPrimitiveTypeKind.Double:
                            return EdmCoreModel.Instance.GetPrimitive(EdmPrimitiveTypeKind.Double, expressionType.IsNullable);
                        case EdmPrimitiveTypeKind.Decimal:
                            return EdmCoreModel.Instance.GetPrimitive(EdmPrimitiveTypeKind.Decimal, expressionType.IsNullable);
                        default:
                            throw new ODataException(
                                ODataErrorStrings.ApplyBinder_AggregateExpressionIncompatibleTypeForMethod(expression,
                                    expressionPrimitiveKind));
                    }

                case AggregationMethod.CountDistinct:
                    return EdmCoreModel.Instance.GetPrimitive(EdmPrimitiveTypeKind.Int64, false);
                case AggregationMethod.Max:
                case AggregationMethod.Min:
                case AggregationMethod.Sum:
                    return expressionType;
                default:
                    throw new ODataException(ODataErrorStrings.ApplyBinder_UnsupportedAggregateMethod(withVerb));
            }
        }