Esempio n. 1
0
        List<Neuron> getNeighborhoodNeurons(Tuple<int, int> neighborhoodTemplate, Tuple<int, int> position, Neuron[,] network)
        {
            List<Neuron> neighborhoodNeurons = new List<Neuron>();

            for (int i = 1; i <= neighborhoodTemplate.Item1; i++)
            {
                for (int j = 1; j <= neighborhoodTemplate.Item2; j++)
                {
                    if (!(position.Item2 - j < 0))
                    {
                        if (!(position.Item1 - i < 0))
                        {
                            neighborhoodNeurons.Add(network[position.Item1 - i, position.Item2 - j]);
                        }
                        if (!(position.Item1 + i >= network.GetLength(0) - 1))
                        {
                            neighborhoodNeurons.Add(network[position.Item1 + i, position.Item2 - j]);
                        }
                    }
                    if (!(position.Item2 + j >= network.GetLength(1) - 1))
                    {
                        if (!(position.Item1 - i < 0))
                        {
                            neighborhoodNeurons.Add(network[position.Item1 - i, position.Item2 + j]);
                        }
                        if (!(position.Item1 + i >= network.GetLength(0) - 1))
                        {
                            neighborhoodNeurons.Add(network[position.Item1 + i, position.Item2 + j]);
                        }
                    }
                }
                if (!(position.Item1 + i >= network.GetLength(0) - 1))
                {
                    neighborhoodNeurons.Add(network[position.Item1 + i, position.Item2]);
                }
                if (!(position.Item1 - i < 0))
                {
                    neighborhoodNeurons.Add(network[position.Item1 - i, position.Item2]);
                }

            }

            for (int j = 1; j <= neighborhoodTemplate.Item2; j++)
            {
                if (!(position.Item2 - j < 0))
                {
                    neighborhoodNeurons.Add(network[position.Item1, position.Item2 - j]);
                }
                if (!(position.Item2 + j >= network.GetLength(1) - 1))
                {
                    neighborhoodNeurons.Add(network[position.Item1, position.Item2 + j]);
                }
            }

            return neighborhoodNeurons;
        }
Esempio n. 2
0
        public void processOutput(Tuple<int, int> neighborhoodTemplate, Tuple<int, int> position, Neuron[,] network)
        {
            double output = 0;
            List<Neuron> neighborhoodNeurons = getNeighborhoodNeurons(neighborhoodTemplate, position, network);

            output += this.input * weight[0];
            output += this.bias * weight[1];
            output += processATemplate(neighborhoodNeurons) * weight[2];
            output += processBTemplate(neighborhoodNeurons) * weight[3];

            output = 1 / (1 + Math.Exp(-output));

            this.output = output;
        }
Esempio n. 3
0
        public void processOutputTest()
        {
            Neuron[,] testNeurons = new Neuron[5,5];
            double expected;
            double actual;

            for (int i = 0; i < testNeurons.GetLength(0); i++)
            {
                for (int j = 0; j < testNeurons.GetLength(1); j++)
                {
                    testNeurons[i, j] = new Neuron(1);
                    testNeurons[i, j].setInput(1);
                    testNeurons[i, j].setWeight(new double[] { 1, 1, 1, 1 });
                }
            }
            Neuron testedNeuron = testNeurons[2, 2];
            testedNeuron.processOutput(new Tuple<int, int>(1, 1), new Tuple<int, int>(2, 2), testNeurons);
            expected = 1 / (1 + Math.Exp(-10));
            actual = testedNeuron.getOutput();
            Assert.AreEqual(expected, actual);

            testedNeuron = testNeurons[0, 0];
            testedNeuron.processOutput(new Tuple<int, int>(1, 1), new Tuple<int, int>(0, 0), testNeurons);
            expected = 1 / (1 + Math.Exp(-5));
            actual = testedNeuron.getOutput();
            Assert.AreEqual(expected, actual);

            testedNeuron = testNeurons[4, 4];
            testedNeuron.processOutput(new Tuple<int, int>(1, 1), new Tuple<int, int>(4, 4), testNeurons);
            expected = 1 / (1 + Math.Exp(-5));
            actual = testedNeuron.getOutput();
            Assert.AreEqual(expected, actual);

            testedNeuron = testNeurons[0, 4];
            testedNeuron.processOutput(new Tuple<int, int>(1, 1), new Tuple<int, int>(0, 4), testNeurons);
            expected = 1 / (1 + Math.Exp(-5));
            actual = testedNeuron.getOutput();
            Assert.AreEqual(expected, actual);

            testedNeuron = testNeurons[4, 0];
            testedNeuron.processOutput(new Tuple<int, int>(1, 1), new Tuple<int, int>(4, 0), testNeurons);
            expected = 1 / (1 + Math.Exp(-5));
            actual = testedNeuron.getOutput();
            Assert.AreEqual(expected, actual);
        }
        public NeuralNetwork(int dimensionX, int dimensionY, int templateDimensionX, int templateDimensionY, Bitmap inputImage, double bias)
        {
            this.network = new Neuron[dimensionX, dimensionY];
            this.neighborhoodTemplate = new Tuple<int, int>(templateDimensionX, templateDimensionY);

            for (int i = 0; i < dimensionX; i++)
            {
                for (int j = 0; j < dimensionY; j++)
                {
                    network[i, j] = new Neuron(bias);
                    Color clr = inputImage.GetPixel(i, j);
                    if (clr.R + clr.G + clr.B == 0)
                    {
                        network[i, j].setInput(1);
                    }
                    else
                    {
                        network[i, j].setInput(0);
                    }
                }
            }
        }