/// <summary> /// Import the model from an xml file /// </summary> public void Import(string model_file_name) { try { XmlSerializer serializer = new XmlSerializer(typeof(svm_model)); FileStream fs = new FileStream(model_file_name, FileMode.Open); this.model = (svm_model)serializer.Deserialize(fs); fs.Close(); } catch (Exception ex) { throw new Exception("An error occured when importing svm model: " + ex.Message); } }
/// <summary> /// /// </summary> /// <param name="text"></param> /// <returns></returns> public void klassifiziere(string text, Hashtable vektorraum, svm_model model) { FeatureVector fv = new FeatureVector(text); fv.Vektorraum = vektorraum; fv.ErzeugeVektor(); LibSVMWrapper lsvmwrap = new LibSVMWrapper(); lsvmwrap.SVMModel = model; lsvmwrap.klazzifiziere(fv.Vektor); label = lsvmwrap.Label; labels = lsvmwrap.Labels; probs = lsvmwrap.Wahrscheinlichkeiten; }
public bool LoadFromFile(string fileName) { if (File.Exists(fileName)) { FileStream fs = new FileStream(fileName, FileMode.Open); using (BinaryReader r = new BinaryReader(fs)) { this.model = new svm_model(); svm_parameter p = new svm_parameter(); p.C = r.ReadDouble(); p.cache_size = r.ReadDouble(); p.coef0 = r.ReadDouble(); p.degree = r.ReadDouble(); p.eps = r.ReadDouble(); p.gamma = r.ReadDouble(); p.kernel_type = r.ReadInt32(); p.nr_weight = r.ReadInt32(); p.nu = r.ReadDouble(); p.p = r.ReadDouble(); p.probability = r.ReadInt32(); p.shrinking = r.ReadInt32(); p.svm_type = r.ReadInt32(); p.weight = ReadDoubleArray(r); p.weight_label = ReadIntArray(r); this.model.param = p; this.model.nr_class = r.ReadInt32(); this.model.l = r.ReadInt32(); this.model.SV = ReadSvmNodeArray(r); this.model.sv_coef = ReadDouble2DArray(r); this.model.rho = ReadDoubleArray(r); this.model.probA = ReadDoubleArray(r); this.model.probB = ReadDoubleArray(r); this.model.label = ReadIntArray(r); this.model.nSV = ReadIntArray(r); return true; } } this.model = null; return false; }
private void run(System.String[] argv) { parse_command_line(argv); read_problem(); error_msg = svm.svm_check_parameter(prob, param); if ((System.Object) error_msg != null) { System.Console.Error.Write("Error: " + error_msg + "\n"); System.Environment.Exit(1); } if (cross_validation != 0) { do_cross_validation(); } else { model = svm.svm_train(prob, param); svm.svm_save_model(model_file_name, model); } }
public static int svm_get_svm_type(svm_model model) { return model.param.svm_type; }
public static int svm_get_nr_class(svm_model model) { return model.nr_class; }
public static void svm_get_labels(svm_model model, int[] label) { if (model.label != null) for (int i = 0; i < model.nr_class; i++) label[i] = model.label[i]; }
// // Interface functions // public static svm_model svm_train(svm_problem prob, svm_parameter param, TrainingProgressEvent progressEvent = null) { svm_model model = new svm_model(); model.param = param; if (param.svm_type == svm_parameter.ONE_CLASS || param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR) { // regression or one-class-svm model.nr_class = 2; model.label = null; model.nSV = null; model.probA = null; model.probB = null; model.sv_coef = new double[1][]; if (param.probability == 1 && (param.svm_type == svm_parameter.EPSILON_SVR || param.svm_type == svm_parameter.NU_SVR)) { model.probA = new double[1]; model.probA[0] = svm_svr_probability(prob, param); } decision_function f = svm_train_one(prob, param, 0, 0); model.rho = new double[1]; model.rho[0] = f.rho; int nSV = 0; int i; for (i = 0; i < prob.l; i++) if (System.Math.Abs(f.alpha[i]) > 0) ++nSV; model.l = nSV; model.SV = new svm_node[nSV][]; model.sv_coef[0] = new double[nSV]; int j = 0; for (i = 0; i < prob.l; i++) if (System.Math.Abs(f.alpha[i]) > 0) { model.SV[j] = prob.x[i]; model.sv_coef[0][j] = f.alpha[i]; ++j; } } else { // classification // find out the number of classes int l = prob.l; int max_nr_class = 16; int nr_class = 0; int[] label = new int[max_nr_class]; int[] count = new int[max_nr_class]; int[] index = new int[l]; int i; for (i = 0; i < l; i++) { //UPGRADE_WARNING: Data types in Visual C# might be different. Verify the accuracy of narrowing conversions. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1042_3"' int this_label = (int)prob.y[i]; int j; for (j = 0; j < nr_class; j++) if (this_label == label[j]) { ++count[j]; break; } index[i] = j; if (j == nr_class) { if (nr_class == max_nr_class) { max_nr_class *= 2; int[] new_data = new int[max_nr_class]; Array.Copy(label, 0, new_data, 0, label.Length); label = new_data; new_data = new int[max_nr_class]; Array.Copy(count, 0, new_data, 0, count.Length); count = new_data; } label[nr_class] = this_label; count[nr_class] = 1; ++nr_class; } } // group training data of the same class int[] start = new int[nr_class]; start[0] = 0; for (i = 1; i < nr_class; i++) start[i] = start[i - 1] + count[i - 1]; svm_node[][] x = new svm_node[l][]; for (i = 0; i < l; i++) { x[start[index[i]]] = prob.x[i]; ++start[index[i]]; } start[0] = 0; for (i = 1; i < nr_class; i++) start[i] = start[i - 1] + count[i - 1]; // calculate weighted C double[] weighted_C = new double[nr_class]; for (i = 0; i < nr_class; i++) weighted_C[i] = param.C; for (i = 0; i < param.nr_weight; i++) { int j; for (j = 0; j < nr_class; j++) if (param.weight_label[i] == label[j]) break; if (j == nr_class) System.Console.Error.Write("warning: class label " + param.weight_label[i] + " specified in weight is not found\n"); else weighted_C[j] *= param.weight[i]; } // train k*(k-1)/2 models bool[] nonzero = new bool[l]; for (i = 0; i < l; i++) nonzero[i] = false; decision_function[] f = new decision_function[nr_class * (nr_class - 1) / 2]; double[] probA = null, probB = null; if (param.probability == 1) { probA = new double[nr_class * (nr_class - 1) / 2]; probB = new double[nr_class * (nr_class - 1) / 2]; } int p = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { svm_problem sub_prob = new svm_problem(); int si = start[i], sj = start[j]; int ci = count[i], cj = count[j]; sub_prob.l = ci + cj; sub_prob.x = new svm_node[sub_prob.l][]; sub_prob.y = new double[sub_prob.l]; int k; for (k = 0; k < ci; k++) { sub_prob.x[k] = x[si + k]; sub_prob.y[k] = +1; } for (k = 0; k < cj; k++) { sub_prob.x[ci + k] = x[sj + k]; sub_prob.y[ci + k] = -1; } if (param.probability == 1) { double[] probAB = new double[2]; svm_binary_svc_probability(sub_prob, param, weighted_C[i], weighted_C[j], probAB); probA[p] = probAB[0]; probB[p] = probAB[1]; } f[p] = svm_train_one(sub_prob, param, weighted_C[i], weighted_C[j]); for (k = 0; k < ci; k++) if (!nonzero[si + k] && System.Math.Abs(f[p].alpha[k]) > 0) nonzero[si + k] = true; for (k = 0; k < cj; k++) if (!nonzero[sj + k] && System.Math.Abs(f[p].alpha[ci + k]) > 0) nonzero[sj + k] = true; ++p; } // build output model.nr_class = nr_class; model.label = new int[nr_class]; for (i = 0; i < nr_class; i++) model.label[i] = label[i]; model.rho = new double[nr_class * (nr_class - 1) / 2]; for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) model.rho[i] = f[i].rho; if (param.probability == 1) { model.probA = new double[nr_class * (nr_class - 1) / 2]; model.probB = new double[nr_class * (nr_class - 1) / 2]; for (i = 0; i < nr_class * (nr_class - 1) / 2; i++) { model.probA[i] = probA[i]; model.probB[i] = probB[i]; } } else { model.probA = null; model.probB = null; } int nnz = 0; int[] nz_count = new int[nr_class]; model.nSV = new int[nr_class]; for (i = 0; i < nr_class; i++) { int nSV = 0; for (int j = 0; j < count[i]; j++) if (nonzero[start[i] + j]) { ++nSV; ++nnz; } model.nSV[i] = nSV; nz_count[i] = nSV; } //Debug.WriteLine("Total nSV = " + nnz + "\n"); model.l = nnz; model.SV = new svm_node[nnz][]; p = 0; for (i = 0; i < l; i++) if (nonzero[i]) model.SV[p++] = x[i]; int[] nz_start = new int[nr_class]; nz_start[0] = 0; for (i = 1; i < nr_class; i++) nz_start[i] = nz_start[i - 1] + nz_count[i - 1]; model.sv_coef = new double[nr_class - 1][]; for (i = 0; i < nr_class - 1; i++) model.sv_coef[i] = new double[nnz]; p = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { // classifier (i,j): coefficients with // i are in sv_coef[j-1][nz_start[i]...], // j are in sv_coef[i][nz_start[j]...] int si = start[i]; int sj = start[j]; int ci = count[i]; int cj = count[j]; int q = nz_start[i]; int k; for (k = 0; k < ci; k++) if (nonzero[si + k]) model.sv_coef[j - 1][q++] = f[p].alpha[k]; q = nz_start[j]; for (k = 0; k < cj; k++) if (nonzero[sj + k]) model.sv_coef[i][q++] = f[p].alpha[ci + k]; ++p; } } return model; }
public static void svm_predict_values(svm_model model, svm_node[] x, double[] dec_values) { if (model.param.svm_type == svm_parameter.ONE_CLASS || model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) { double[] sv_coef = model.sv_coef[0]; double sum = 0; for (int i = 0; i < model.l; i++) sum += sv_coef[i] * Kernel.k_function(x, model.SV[i], model.param); sum -= model.rho[0]; dec_values[0] = sum; } else { int i; int nr_class = model.nr_class; int l = model.l; double[] kvalue = new double[l]; for (i = 0; i < l; i++) kvalue[i] = Kernel.k_function(x, model.SV[i], model.param); int[] start = new int[nr_class]; start[0] = 0; for (i = 1; i < nr_class; i++) start[i] = start[i - 1] + model.nSV[i - 1]; int p = 0; int pos = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { double sum = 0; int si = start[i]; int sj = start[j]; int ci = model.nSV[i]; int cj = model.nSV[j]; int k; double[] coef1 = model.sv_coef[j - 1]; double[] coef2 = model.sv_coef[i]; for (k = 0; k < ci; k++) sum += coef1[si + k] * kvalue[si + k]; for (k = 0; k < cj; k++) sum += coef2[sj + k] * kvalue[sj + k]; sum -= model.rho[p++]; dec_values[pos++] = sum; } } }
public static double svm_predict(svm_model model, svm_node[] x) { if (model.param.svm_type == svm_parameter.ONE_CLASS || model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) { double[] res = new double[1]; svm_predict_values(model, x, res); if (model.param.svm_type == svm_parameter.ONE_CLASS) return (res[0] > 0)?1:- 1; else return res[0]; } else { int i; int nr_class = model.nr_class; double[] dec_values = new double[nr_class * (nr_class - 1) / 2]; svm_predict_values(model, x, dec_values); int[] vote = new int[nr_class]; for (i = 0; i < nr_class; i++) vote[i] = 0; int pos = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { if (dec_values[pos++] > 0) ++vote[i]; else ++vote[j]; } int vote_max_idx = 0; for (i = 1; i < nr_class; i++) if (vote[i] > vote[vote_max_idx]) vote_max_idx = i; return model.label[vote_max_idx]; } }
public SvmModelBuilder() { this.model = null; }
/// <summary> /// Train the SVM and save the model /// </summary> public void Train() { this.model = svm.svm_train(prob, param); }
/// <summary> /// Import the model from an xml file /// </summary> public void Import(string model_file_name) { try { XmlSerializer serializer = new XmlSerializer(typeof(svm_model)); FileStream fs = new FileStream(model_file_name, FileMode.Open); this.model = (svm_model) serializer.Deserialize(fs); fs.Close(); } catch (Exception ex) { throw new Exception("An error occured when importing svm model: " + ex.Message); } }
public void TrainLibSVM(double[][] vektoren, double[] labels, double currentC, double currentG, out int errorCount) { int nrdocs = vektoren.Length; svm_problem prob = new svm_problem(); prob.l = vektoren.Length - 1; prob.y = labels; svm_node[][] nodes = new svm_node[nrdocs][]; for (int i = 0; i < vektoren.Length; i++) { int dim = vektoren[i].Length; nodes[i] = new svm_node[dim + 1]; for (int j = 0; j < dim; j++) { svm_node n = new svm_node(); n.index = j; n.value_Renamed = vektoren[i][j]; nodes[i][j] = n; } svm_node ln = new svm_node(); ln.index = -1; ln.value_Renamed = 0; nodes[i][dim] = ln; } prob.x = nodes; svm_parameter param = new svm_parameter(); param.cache_size = 256.0; param.C = 1000.0; //param.weight = new double[] { 1.0, 1.0, 1.0, 1.0, 1.0 }; //param.weight_label = new int[] { 1, 1, 1, 1, 1 }; param.svm_type = svm_parameter.C_SVC; param.kernel_type = svm_parameter.SIGMOID; param.gamma = 0.00000001; param.eps = 0.0001; //param.nr_weight = 0; param.probability = 1; //double[] cs; //double[] gs; double[] cergs = new double[labels.Length]; int minfehler = labels.Length; int fehler = 0; double c = 0.0; double g = 0.0; #region Parameterabstimmung //cs = new double[] { Math.Pow(2.0, -15.0), Math.Pow(2.0, -11.0), Math.Pow(2.0, -9.0), Math.Pow(2.0, -7.0), Math.Pow(2.0, -5.0), Math.Pow(2.0, -3.0), Math.Pow(2.0, -1.0), Math.Pow(2.0, 1.0), Math.Pow(2.0, 3.0), Math.Pow(2.0, 5.0), Math.Pow(2.0, 7.0), Math.Pow(2.0, 12.0), Math.Pow(2.0, 15.0) }; //gs = new double[] { Math.Pow(2.0, -15.0), Math.Pow(2.0, -12.0), Math.Pow(2.0, -9.0), Math.Pow(2.0, -7.0), Math.Pow(2.0, -5.0), Math.Pow(2.0, -3.0), Math.Pow(2.0, -1.0), Math.Pow(2.0, 1.0), Math.Pow(2.0, 3.0) }; //cs = new double[] { Math.Pow(2.0, -3.0), Math.Pow(2.0, -1.0), Math.Pow(2.0, 1.0), Math.Pow(2.0, 3.0), Math.Pow(2.0, 5.0), Math.Pow(2.0, 7.0), Math.Pow(2.0, 12.0) }; //gs = new double[] { Math.Pow(2.0, -7.0), Math.Pow(2.0, -5.0), Math.Pow(2.0, -3.0), Math.Pow(2.0, -1.0), Math.Pow(2.0, 1.0), Math.Pow(2.0, 3.0) }; //for (int i = 0; i < cs.Length; i++) //{ // param.C = cs[i]; // for (int j = 0; j < gs.Length; j++) // { // fehler = 0; // param.gamma = gs[j]; // string res = svm.svm_check_parameter(prob, param); // if (res == null) // { // svm.svm_cross_validation(prob, param, vektoren.Length/4, cergs); // for (int k = 0; k < labels.Length; k++) // { // if (cergs[k] != labels[k]) // fehler++; // } // if (fehler < minfehler) // { // minfehler = fehler; // c = param.C; // g = param.gamma; // } // } // } //} param.C = currentC; fehler = 0; param.gamma = currentG; string res = svm.svm_check_parameter(prob, param); if (res == null) { svm.svm_cross_validation(prob, param, vektoren.Length / 4, cergs); for (int k = 0; k < labels.Length; k++) { if (cergs[k] != labels[k]) { fehler++; } } if (fehler < minfehler) { minfehler = fehler; c = param.C; g = param.gamma; } } #endregion #region Feinabstimmung //cs = new double[] { c * 0.3, c * 0.4, c * 0.5, c * 0.6, c * 0.7, c * 0.8, c * 0.9, c, c * 2.0, c * 3.0, c * 4.0, c * 5.0, c * 6.0 }; //gs = new double[] { g * 0.5, g * 0.6, g * 0.7, g * 0.8, g * 0.9, g, g * 2.0, g * 3.0, g * 4.0 }; double[] csF = new double[] { c * 0.6, c * 0.7, c * 0.8, c * 0.9, c, c * 2.0, c * 3.0 }; double[] gsF = new double[] { g * 0.7, g * 0.8, g * 0.9, g, g * 2.0, g * 3.0 }; for (int i = 0; i < csF.Length; i++) { param.C = csF[i]; for (int j = 0; j < gsF.Length; j++) { fehler = 0; param.gamma = gsF[j]; res = svm.svm_check_parameter(prob, param); if (res == null) { svm.svm_cross_validation(prob, param, vektoren.Length / 4, cergs); for (int k = 0; k < labels.Length; k++) { if (cergs[k] != labels[k]) { fehler++; } } if (fehler < minfehler) { minfehler = fehler; c = param.C; g = param.gamma; } } //Thread.Sleep(1); } //Thread.Sleep(10); } #endregion #region Superfeinabstimmung //cs = new double[] { c - 7.0, c - 6.0, c - 5.0, c - 4.0, c - 3.0, c - 2.0, c - 1.0, c, c + 1.0, c + 2.0, c + 3.0, c + 4.0, c + 5.0 }; //gs = new double[] { g - 5.0, g - 4.0, g - 3.0, g - 2.0, g - 1.0, g, g + 1.0, g + 2.0, g + 3.0 }; /*cs = new double[] { c - 1.0, c - 0.3, c - 0.1, c, c + 0.1, c + 0.3, c + 1.0, }; * gs = new double[] { g - 1.0, g - 0.3, g - 0.1, g, g + 0.1, g + 0.3, g + 1.0 }; * for (int i = 0; i < cs.Length; i++) * { * param.C = cs[i]; * * for (int j = 0; j < gs.Length; j++) * { * fehler = 0; * param.gamma = gs[j]; * string res = svm.svm_check_parameter(prob, param); * if (res == null) * { * svm.svm_cross_validation(prob, param, 6, cergs); * * for (int k = 0; k < labels.Length; k++) * { * if (cergs[k] != labels[k]) * fehler++; * } * if (fehler < minfehler) * { * minfehler = fehler; * c = param.C; * g = param.gamma; * } * } * } * }*/ #endregion param.C = c; param.gamma = g; this._model = new svm_model(); this._model = svm.svm_train(prob, param); int anzKlassen = svm.svm_get_nr_class(this._model); double[] probs = new double[anzKlassen]; double erg; erg = svm.svm_predict_probability(this._model, nodes[0], probs); //erg = svm.svm_predict_probability(this._model, nodes[11], probs); //klazzifiziere(this.testvektor); //klazzifiziere(vektoren[6]); errorCount = minfehler; }
public static double svm_get_svr_probability(svm_model model) { if ((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) && model.probA != null) return model.probA[0]; else { System.Console.Error.Write("Model doesn't contain information for SVR probability inference\n"); return 0; } }
public static svm_model svm_load_model(System.String model_file_name) { //UPGRADE_TODO: The differences in the expected value of parameters for constructor 'java.io.BufferedReader.BufferedReader' may cause compilation errors. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1092_3"' //UPGRADE_WARNING: At least one expression was used more than once in the target code. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1181_3"' //UPGRADE_TODO: Constructor 'java.io.FileReader.FileReader' was converted to 'System.IO.StreamReader' which has a different behavior. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1073_3"' /*Original System.IO.StreamReader fp = new System.IO.StreamReader(new System.IO.StreamReader(model_file_name, System.Text.Encoding.Default).BaseStream, new System.IO.StreamReader(model_file_name, System.Text.Encoding.Default).CurrentEncoding);*/ System.IO.StreamReader fp = new System.IO.StreamReader(new System.IO.FileStream(model_file_name, System.IO.FileMode.Open)); // read parameters svm_model model = new svm_model(); svm_parameter param = new svm_parameter(); model.param = param; model.rho = null; model.probA = null; model.probB = null; model.label = null; model.nSV = null; while (true) { System.String cmd = fp.ReadLine(); System.String arg = cmd.Substring(cmd.IndexOf((System.Char) ' ') + 1); if (cmd.StartsWith("svm_type")) { int i; for (i = 0; i < svm_type_table.Length; i++) { if (arg.IndexOf(svm_type_table[i]) != - 1) { param.svm_type = i; break; } } if (i == svm_type_table.Length) { System.Console.Error.Write("unknown svm type.\n"); return null; } } else if (cmd.StartsWith("kernel_type")) { int i; for (i = 0; i < kernel_type_table.Length; i++) { if (arg.IndexOf(kernel_type_table[i]) != - 1) { param.kernel_type = i; break; } } if (i == kernel_type_table.Length) { System.Console.Error.Write("unknown kernel function.\n"); return null; } } else if (cmd.StartsWith("degree")) param.degree = atof(arg); else if (cmd.StartsWith("gamma")) param.gamma = atof(arg); else if (cmd.StartsWith("coef0")) param.coef0 = atof(arg); else if (cmd.StartsWith("nr_class")) model.nr_class = atoi(arg); else if (cmd.StartsWith("total_sv")) model.l = atoi(arg); else if (cmd.StartsWith("rho")) { int n = model.nr_class * (model.nr_class - 1) / 2; model.rho = new double[n]; SupportClass.Tokenizer st = new SupportClass.Tokenizer(arg); for (int i = 0; i < n; i++) model.rho[i] = atof(st.NextToken()); } else if (cmd.StartsWith("label")) { int n = model.nr_class; model.label = new int[n]; SupportClass.Tokenizer st = new SupportClass.Tokenizer(arg); for (int i = 0; i < n; i++) model.label[i] = atoi(st.NextToken()); } else if (cmd.StartsWith("probA")) { int n = model.nr_class * (model.nr_class - 1) / 2; model.probA = new double[n]; SupportClass.Tokenizer st = new SupportClass.Tokenizer(arg); for (int i = 0; i < n; i++) model.probA[i] = atof(st.NextToken()); } else if (cmd.StartsWith("probB")) { int n = model.nr_class * (model.nr_class - 1) / 2; model.probB = new double[n]; SupportClass.Tokenizer st = new SupportClass.Tokenizer(arg); for (int i = 0; i < n; i++) model.probB[i] = atof(st.NextToken()); } else if (cmd.StartsWith("nr_sv")) { int n = model.nr_class; model.nSV = new int[n]; SupportClass.Tokenizer st = new SupportClass.Tokenizer(arg); for (int i = 0; i < n; i++) model.nSV[i] = atoi(st.NextToken()); } else if (cmd.StartsWith("SV")) { break; } else { System.Console.Error.Write("unknown text in model file\n"); return null; } } // read sv_coef and SV int m = model.nr_class - 1; int l = model.l; model.sv_coef = new double[m][]; for (int i = 0; i < m; i++) { model.sv_coef[i] = new double[l]; } model.SV = new svm_node[l][]; for (int i = 0; i < l; i++) { System.String line = fp.ReadLine(); SupportClass.Tokenizer st = new SupportClass.Tokenizer(line, " \t\n\r\f:"); for (int k = 0; k < m; k++) model.sv_coef[k][i] = atof(st.NextToken()); int n = st.Count / 2; model.SV[i] = new svm_node[n]; for (int j = 0; j < n; j++) { model.SV[i][j] = new svm_node(); model.SV[i][j].index = atoi(st.NextToken()); model.SV[i][j].value = atof(st.NextToken()); } } fp.Close(); return model; }
public void TrainModel(double[] labels, double[][] mlArray) { SvmProblemBuilder builder = new SvmProblemBuilder(labels, mlArray); svm_problem problem = builder.CreateProblem(); svm_parameter param = new svm_parameter() { svm_type = 0, kernel_type = 0, cache_size = 512, eps = 0.1, C = 10, nr_weight = 0, weight_label = null, weight = null }; this.model = svm.svm_train(problem, param); }
public static double svm_predict_probability(svm_model model, svm_node[] x, double[] prob_estimates) { if ((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) && model.probA != null && model.probB != null) { int i; int nr_class = model.nr_class; double[] dec_values = new double[nr_class * (nr_class - 1) / 2]; svm_predict_values(model, x, dec_values); double min_prob = 1e-7; double[][] tmpArray = new double[nr_class][]; for (int i2 = 0; i2 < nr_class; i2++) { tmpArray[i2] = new double[nr_class]; } double[][] pairwise_prob = tmpArray; int k = 0; for (i = 0; i < nr_class; i++) for (int j = i + 1; j < nr_class; j++) { pairwise_prob[i][j] = System.Math.Min(System.Math.Max(sigmoid_predict(dec_values[k], model.probA[k], model.probB[k]), min_prob), 1 - min_prob); pairwise_prob[j][i] = 1 - pairwise_prob[i][j]; k++; } multiclass_probability(nr_class, pairwise_prob, prob_estimates); int prob_max_idx = 0; for (i = 1; i < nr_class; i++) if (prob_estimates[i] > prob_estimates[prob_max_idx]) prob_max_idx = i; return model.label[prob_max_idx]; } else return svm_predict(model, x); }
private static void predict(System.IO.StreamReader input, System.IO.BinaryWriter output, svm_model model, int predict_probability) { int correct = 0; int total = 0; double error = 0; double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; int svm_type = svm.svm_get_svm_type(model); int nr_class = svm.svm_get_nr_class(model); int[] labels = new int[nr_class]; double[] prob_estimates = null; if (predict_probability == 1) { if (svm_type == svm_parameter.EPSILON_SVR || svm_type == svm_parameter.NU_SVR) { System.Console.Out.Write("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + svm.svm_get_svr_probability(model) + "\n"); } else { svm.svm_get_labels(model, labels); prob_estimates = new double[nr_class]; //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write("labels"); for (int j = 0; j < nr_class; j++) { //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write(" " + labels[j]); } //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write("\n"); } } while (true) { System.String line = input.ReadLine(); if ((System.Object) line == null) break; SupportClass.Tokenizer st = new SupportClass.Tokenizer(line, " \t\n\r\f:"); double target = atof(st.NextToken()); int m = st.Count / 2; svm_node[] x = new svm_node[m]; for (int j = 0; j < m; j++) { x[j] = new svm_node(); x[j].index = atoi(st.NextToken()); x[j].value_Renamed = atof(st.NextToken()); } double v; if (predict_probability == 1 && (svm_type == svm_parameter.C_SVC || svm_type == svm_parameter.NU_SVC)) { v = svm.svm_predict_probability(model, x, prob_estimates); //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write(v + " "); for (int j = 0; j < nr_class; j++) { //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write(prob_estimates[j] + " "); } //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write("\n"); } else { v = svm.svm_predict(model, x); //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write(v + "\n"); } if (v == target) ++correct; error += (v - target) * (v - target); sumv += v; sumy += target; sumvv += v * v; sumyy += target * target; sumvy += v * target; ++total; } System.Console.Out.Write("Accuracy = " + (double) correct / total * 100 + "% (" + correct + "/" + total + ") (classification)\n"); System.Console.Out.Write("Mean squared error = " + error / total + " (regression)\n"); System.Console.Out.Write("Squared correlation coefficient = " + ((total * sumvy - sumv * sumy) * (total * sumvy - sumv * sumy)) / ((total * sumvv - sumv * sumv) * (total * sumyy - sumy * sumy)) + " (regression)\n"); }
public static void svm_save_model(System.String model_file_name, svm_model model) { //UPGRADE_TODO: Class 'java.io.DataOutputStream' was converted to 'System.IO.BinaryWriter' which has a different behavior. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1073_javaioDataOutputStream_3"' //UPGRADE_TODO: Constructor 'java.io.FileOutputStream.FileOutputStream' was converted to 'System.IO.FileStream.FileStream' which has a different behavior. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1073_javaioFileOutputStreamFileOutputStream_javalangString_3"' /* Original System.IO.BinaryWriter fp = new System.IO.BinaryWriter(new System.IO.FileStream(model_file_name, System.IO.FileMode.Create));*/ System.IO.StreamWriter fp = new System.IO.StreamWriter(new System.IO.FileStream(model_file_name, System.IO.FileMode.Create)); svm_parameter param = model.param; fp.Write("svm_type " + svm_type_table[param.svm_type] + "\n"); fp.Write("kernel_type " + kernel_type_table[param.kernel_type] + "\n"); if (param.kernel_type == svm_parameter.POLY) fp.Write("degree " + param.degree + "\n"); if (param.kernel_type == svm_parameter.POLY || param.kernel_type == svm_parameter.RBF || param.kernel_type == svm_parameter.SIGMOID) fp.Write("gamma " + param.gamma + "\n"); if (param.kernel_type == svm_parameter.POLY || param.kernel_type == svm_parameter.SIGMOID) fp.Write("coef0 " + param.coef0 + "\n"); int nr_class = model.nr_class; int l = model.l; fp.Write("nr_class " + nr_class + "\n"); fp.Write("total_sv " + l + "\n"); { fp.Write("rho"); for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) fp.Write(" " + model.rho[i]); fp.Write("\n"); } if (model.label != null) { fp.Write("label"); for (int i = 0; i < nr_class; i++) fp.Write(" " + model.label[i]); fp.Write("\n"); } if (model.probA != null) // regression has probA only { fp.Write("probA"); for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) fp.Write(" " + model.probA[i]); fp.Write("\n"); } if (model.probB != null) { fp.Write("probB"); for (int i = 0; i < nr_class * (nr_class - 1) / 2; i++) fp.Write(" " + model.probB[i]); fp.Write("\n"); } if (model.nSV != null) { fp.Write("nr_sv"); for (int i = 0; i < nr_class; i++) fp.Write(" " + model.nSV[i]); fp.Write("\n"); } fp.Write("SV\n"); double[][] sv_coef = model.sv_coef; svm_node[][] SV = model.SV; for (int i = 0; i < l; i++) { for (int j = 0; j < nr_class - 1; j++) fp.Write(sv_coef[j][i] + " "); svm_node[] p = SV[i]; for (int j = 0; j < p.Length; j++) fp.Write(p[j].index + ":" + p[j].value + " "); fp.Write("\n"); } fp.Close(); }
public static int svm_check_probability_model(svm_model model) { if (((model.param.svm_type == svm_parameter.C_SVC || model.param.svm_type == svm_parameter.NU_SVC) && model.probA != null && model.probB != null) || ((model.param.svm_type == svm_parameter.EPSILON_SVR || model.param.svm_type == svm_parameter.NU_SVR) && model.probA != null)) return 1; else return 0; }
private static ArrayList[] predict(System.IO.StreamReader input, System.IO.StreamWriter output, svm_model model, int predict_probability) { //int correct = 0; //int total = 0; //double error = 0; //double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0; ArrayList[] arrResult = new ArrayList[2];//Mảng thứ 1 chứa kết quả thực sự, mảng thứ 2 chứa kết quả dự đoán arrResult[0] = new ArrayList(); arrResult[1] = new ArrayList(); int svm_type = svm.svm_get_svm_type(model); int nr_class = svm.svm_get_nr_class(model); int[] labels = new int[nr_class]; double[] prob_estimates = null; if (predict_probability == 1) { if (svm_type == svm_parameter.EPSILON_SVR || svm_type == svm_parameter.NU_SVR) { System.Console.Out.Write("Prob. model for test data: target value = predicted value + z,\nz: Laplace distribution e^(-|z|/sigma)/(2sigma),sigma=" + svm.svm_get_svr_probability(model) + "\n"); } else { svm.svm_get_labels(model, labels); prob_estimates = new double[nr_class]; //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write("labels"); for (int j = 0; j < nr_class; j++) { //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write(" " + labels[j]); } //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write("\n"); } } #region [Thêm] Lấy thông tin tiền xử lý từ dòng đầu của file test System.String strPreprocess = input.ReadLine(); #endregion while (true) { System.String line = input.ReadLine(); if ((System.Object)line == null) break; SupportClass.Tokenizer st = new SupportClass.Tokenizer(line, " \t\n\r\f:"); double target = atof(st.NextToken()); int m = st.Count / 2; svm_node[] x = new svm_node[m]; for (int j = 0; j < m; j++) { x[j] = new svm_node(); x[j].index = atoi(st.NextToken()); x[j].value_Renamed = atof(st.NextToken()); } double v; if (predict_probability == 1 && (svm_type == svm_parameter.C_SVC || svm_type == svm_parameter.NU_SVC)) { v = svm.svm_predict_probability(model, x, prob_estimates); //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write(v + " "); for (int j = 0; j < nr_class; j++) { //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write(prob_estimates[j] + " "); } //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write("\n"); } else { v = svm.svm_predict(model, x); #region [Thêm] Chuyển về dữ liệu nguyên thủy dựa vào cách tiền xử lý string[] strItems = strPreprocess.Split(' '); double dblMin; double dblMax; double dblDiff; switch (strItems[0]) { case "ScaleByMinMax": dblMin = Convert.ToDouble(strItems[1]); dblMax = Convert.ToDouble(strItems[2]); dblDiff = dblMax - dblMin; v = v * dblDiff + dblMin; target = target * dblDiff + dblMin; break; default: break; } #endregion arrResult[0].Add(target); arrResult[1].Add(v); //UPGRADE_ISSUE: Method 'java.io.DataOutputStream.Write' was not converted. 'ms-help://MS.VSCC.2003/commoner/redir/redirect.htm?keyword="jlca1000_javaioDataOutputStreamWrite_javalangString"' output.Write(target + " " + v + "\n"); } //#region [Thêm] Chuyển về dữ liệu nguyên thủy dựa vào cách tiền xử lý //string[] strItems = strPreprocess.Split(' '); //switch (strItems[0]) //{ // case "Scale(0,1)": // double dblMin = Convert.ToDouble(strItems[1]); // double dblMax = Convert.ToDouble(strItems[2]); // double dblDiff = dblMax - dblMin; // v = (v - 0.15) * dblDiff / 0.7 + dblMin; // target = (target - 0.15) * dblDiff / 0.7 + dblMin; // break; // default: // break; //} //#endregion //arrResult[0].Add(target); //arrResult[1].Add(v); //if (v == target) // ++correct; //error += (v - target) * (v - target); //sumv += v; //sumy += target; //sumvv += v * v; //sumyy += target * target; //sumvy += v * target; //++total; } return arrResult; //System.Console.Out.Write("Accuracy = " + (double) correct / total * 100 + "% (" + correct + "/" + total + ") (classification)\n"); //System.Console.Out.Write("Mean squared error = " + error / total + " (regression)\n"); //System.Console.Out.Write("Squared correlation coefficient = " + ((total * sumvy - sumv * sumy) * (total * sumvy - sumv * sumy)) / ((total * sumvv - sumv * sumv) * (total * sumyy - sumy * sumy)) + " (regression)\n"); }