private static double scoreBitmap(WordsearchRotation rotation, Classifier classifier)
        {
            //Extract each charcater in this wordsearch, then run them through the classifier and sum the liklihoods of 
            //  the most probable class to determine an overall score for the image
            Bitmap[,] chars = null;

            //If using number of rows & cols for a fixed row/col width/height
            if(rotation.Segmentation == null)
            {
                //Use standardised width & height for characters (do this by first resizing the image)
                int wordsearchWidth = Constants.CHAR_WITH_WHITESPACE_WIDTH * rotation.Cols;
                int wordsearchHeight = Constants.CHAR_WITH_WHITESPACE_HEIGHT * rotation.Rows;

                ResizeBicubic resize = new ResizeBicubic(wordsearchWidth, wordsearchHeight);
                Bitmap resizedImg = resize.Apply(rotation.Bitmap);

                //Split the bitmap up into a 2D array of bitmaps
                chars = SplitImage.Grid(resizedImg, rotation.Rows, rotation.Cols);

                //If the image got resized, dispose of the resized copy
                if(resizedImg != rotation.Bitmap)
                {
                    resizedImg.Dispose();
                }
            }
            else //Otherwise we have a Segmentation object to use
            {
                chars = SplitImage.Segment(rotation.Bitmap, rotation.Segmentation);
            }

            double score = 0;
            foreach(Bitmap charImg in chars)
            {
                //Remove all of the whitespace etc... returning an image that can be used for classification
                Bitmap extractedCharImg = CharImgExtractor.Extract(charImg);

                //Classify this bitmap
                double[] charResult = classifier.Classify(extractedCharImg);

                //Get the largest probability from the classifier output and add it to the overall score
                double largest = charResult[0];
                for(int i = 1; i < charResult.Length; i++)
                {
                    if(charResult[i] > largest)
                    {
                        largest = charResult[i];
                    }
                }

                score += largest;

                //Clean up
                extractedCharImg.Dispose();
                charImg.Dispose();
            }

            return score;
        }
Esempio n. 2
0
        internal static WordsearchSolutionEvaluator EvaluateWordsearchBitmap(Bitmap wordsearchBitmap, string[] wordsToFind,
            Dictionary<string, List<WordPosition>> correctSolutions, SegmentationAlgorithm segmentationAlgorithm, 
            bool segmentationRemoveSmallRowsAndCols, SegmentationMethod segmentationMethod,
            Classifier probabilisticRotationCorrectionClassifier, Classifier classifier, Solver wordsearchSolver)
        {
            /*
             * Wordsearch Segmentation
             */
            Segmentation segmentation = segmentationAlgorithm.Segment(wordsearchBitmap);

            //Remove erroneously small rows and columns from the segmentation if that option is specified
            if(segmentationRemoveSmallRowsAndCols)
            {
                segmentation = segmentation.RemoveSmallRowsAndCols();
            }

            /*
             * Wordsearch Rotation Correction
             */
            WordsearchRotation originalRotation;

            //If we're using fixed row & col width
            if (segmentationMethod == SegmentationMethod.FixedWidth)
            {
                originalRotation = new WordsearchRotation(wordsearchBitmap, segmentation.NumRows, segmentation.NumCols);
            }
            else //Otherwise we're using varied row/col width segmentation, use the Segmentation object
            {
                originalRotation = new WordsearchRotation(wordsearchBitmap, segmentation);
            }

            WordsearchRotation rotatedWordsearch = WordsearchRotationCorrection.CorrectOrientation(originalRotation, probabilisticRotationCorrectionClassifier);

            Bitmap rotatedImage = rotatedWordsearch.Bitmap;

            //If the wordsearch has been rotated
            if (rotatedImage != wordsearchBitmap)
            {
                //Update the segmentation

                //If the wordsearch rotation won't have been passed a segmentation
                if (segmentationMethod == SegmentationMethod.FixedWidth)
                {
                    //Make a new fixed width segmentation from the WordsearchRotation
                    segmentation = new Segmentation(rotatedWordsearch.Rows, rotatedWordsearch.Cols,
                        rotatedImage.Width, rotatedImage.Height);
                }
                else
                {
                    //Use the rotated segmentation 
                    segmentation = rotatedWordsearch.Segmentation;
                }
            }

            /*
             * Classification
             */

            //Split image up into individual characters
            Bitmap[,] rawCharImgs = null;

            //If we're using fixed row & col width
            if (segmentationMethod == SegmentationMethod.FixedWidth)
            {
                ResizeBicubic resize = new ResizeBicubic(Constants.CHAR_WITH_WHITESPACE_WIDTH * segmentation.NumCols,
                    Constants.CHAR_WITH_WHITESPACE_HEIGHT * segmentation.NumRows);
                Bitmap resizedImage = resize.Apply(rotatedImage);

                rawCharImgs = SplitImage.Grid(resizedImage, segmentation.NumRows, segmentation.NumCols);

                //Resized image no longer required
                resizedImage.Dispose();
            }
            else //Otherwise we're using varied row/col width segmentation
            {
                rawCharImgs = SplitImage.Segment(rotatedImage, segmentation);

                //If the Segmentation Method is to resize the raw char imgs, resize them
                if (segmentationMethod == SegmentationMethod.VariedWidthWithResize)
                {
                    ResizeBicubic resize = new ResizeBicubic(Constants.CHAR_WITH_WHITESPACE_WIDTH, Constants.CHAR_WITH_WHITESPACE_HEIGHT);

                    for (int i = 0; i < rawCharImgs.GetLength(0); i++)
                    {
                        for (int j = 0; j < rawCharImgs.GetLength(1); j++)
                        {
                            //Only do the resize if it isn't already that size
                            if (rawCharImgs[i, j].Width != Constants.CHAR_WITH_WHITESPACE_WIDTH
                                || rawCharImgs[i, j].Height != Constants.CHAR_WITH_WHITESPACE_HEIGHT)
                            {
                                Bitmap orig = rawCharImgs[i, j];

                                rawCharImgs[i, j] = resize.Apply(orig);

                                //Remove the now unnecessary original/not resized image
                                orig.Dispose();
                            }
                        }
                    }
                }
            }

            //Full sized rotated image no longer required
            rotatedImage.Dispose();

            //Get the part of the image that actually contains the character (without any whitespace)
            Bitmap[,] charImgs = CharImgExtractor.ExtractAll(rawCharImgs);

            //Raw char img's are no longer required
            rawCharImgs.ToSingleDimension().DisposeAll();

            //Perform the classification on all of the images (returns probabilities for each possible class)
            double[][][] classifierOutput = classifier.Classify(charImgs);

            //Actual images of the characters are no longer required
            charImgs.ToSingleDimension().DisposeAll();

            /*
             * Solve Wordsearch
             */
            Solution solution = wordsearchSolver.Solve(classifierOutput, wordsToFind);

            /*
             * Evaluate the Proposed Solution
             */
            WordsearchSolutionEvaluator evaluator = new WordsearchSolutionEvaluator(solution, correctSolutions);

            return evaluator;
        }