Esempio n. 1
0
        public KLayer(int inputsCount, int neuronsCount)
        {
            _Neurons = new KNeuron[neuronsCount];
            _Output = new double[neuronsCount];

            for (int i = 0; i < _Neurons.Length; i++)
                _Neurons[i] = new KNeuron(inputsCount);
        }
Esempio n. 2
0
        public KLayer(int inputsCount, int neuronsCount)
        {
            _Neurons = new KNeuron[neuronsCount];
            _Output  = new double[neuronsCount];

            for (int i = 0; i < _Neurons.Length; i++)
            {
                _Neurons[i] = new KNeuron(inputsCount);
            }
        }
Esempio n. 3
0
        public double Run(KLearnData sample)
        {
            double error = 0.0;


            _Network.Compute(sample._Input);

            int winner = _Network.GetWinner();

            // get layer of the network
            KLayer layer = _Network[0];

            layer[winner].AddSymbol(sample._Symbol);



            // update weight of the winner only


            // check learning radius
            if (_LearningRadius == 0)
            {
                KNeuron neuron = layer[winner];

                for (int i = 0, n = neuron._Weights.Length; i < n; i++)
                {
                    neuron[i] += (sample._Input[i] - neuron[i]) * 0.01;
                }
            }
            else
            {
                // winner's X and Y
                int wx = winner % _Width;
                int wy = winner / _Width;

                // walk through all neurons of the layer
                for (int j = 0, m = layer._Neurons.Length; j < m; j++)
                {
                    KNeuron neuron = layer[j];

                    int dx = (j % _Width) - wx;
                    int dy = (j / _Width) - wy;

                    // update factor ( Gaussian based )
                    double factor = Math.Exp(-(double)(dx * dx + dy * dy) / _SquaredRadius2);

                    // update weight of the neuron
                    for (int i = 0, n = neuron._Weights.Length; i < n; i++)
                    {
                        // calculate the error
                        double e = (sample._Input[i] - neuron[i]) * factor;
                        error += Math.Abs(e);
                        // update weight
                        neuron[i] += e * _LearningRate;
                    }
                }
            }


            return(0);
        }