Esempio n. 1
0
        public IOWriteResult Write(BinaryWriter writer, List <WriteMesh> vMeshes, WriteOptions options)
        {
            string header = "g3sharp_stl ";

            byte[] header_bytes = ASCIIEncoding.ASCII.GetBytes(header);
            byte[] stl_header   = new byte[80];
            Array.Clear(stl_header, 0, stl_header.Length);
            Array.Copy(header_bytes, stl_header, header_bytes.Length);

            writer.Write(stl_header);

            int total_tris = 0;

            foreach (WriteMesh mesh in vMeshes)
            {
                total_tris += mesh.Mesh.TriangleCount;
            }

            writer.Write(total_tris);

            for (int mi = 0; mi < vMeshes.Count; ++mi)
            {
                IMesh mesh = vMeshes[mi].Mesh;

                if (options.ProgressFunc != null)
                {
                    options.ProgressFunc(mi, vMeshes.Count - 1);
                }

                Func <int, stl_triangle> producerF = (ti) =>
                {
                    var      tri = new stl_triangle();
                    Index3i  t = mesh.GetTriangle(ti);
                    Vector3d a = mesh.GetVertex(t.a), b = mesh.GetVertex(t.b), c = mesh.GetVertex(t.c);
                    Vector3d n = MathUtil.Normal(a, b, c);

                    tri.nx     = (float)n.x; tri.ny = (float)n.y; tri.nz = (float)n.z;
                    tri.ax     = (float)a.x; tri.ay = (float)a.y; tri.az = (float)a.z;
                    tri.bx     = (float)b.x; tri.by = (float)b.y; tri.bz = (float)b.z;
                    tri.cx     = (float)c.x; tri.cy = (float)c.y; tri.cz = (float)c.z;
                    tri.attrib = 0;
                    return(tri);
                };
                Action <stl_triangle> consumerF = (tri) =>
                {
                    byte[] tri_bytes = Util.StructureToByteArray(tri);
                    writer.Write(tri_bytes);
                };

                var stream = new ParallelStream <int, stl_triangle>();
                stream.ProducerF = producerF;
                stream.ConsumerF = consumerF;

                // parallel version is slower =\
                //stream.Run_Thread(mesh.TriangleIndices());
                stream.Run(mesh.TriangleIndices());
            }

            return(new IOWriteResult(IOCode.Ok, ""));
        }
Esempio n. 2
0
        public IOWriteResult Write(TextWriter writer, List <WriteMesh> vMeshes, WriteOptions options)
        {
            if (options.bCombineMeshes == true)
            {
                writer.WriteLine("solid \"mesh\"");
            }

            string three_floats = Util.MakeVec3FormatString(0, 1, 2, options.RealPrecisionDigits);

            for (int mi = 0; mi < vMeshes.Count; ++mi)
            {
                IMesh mesh = vMeshes[mi].Mesh;

                if (options.ProgressFunc != null)
                {
                    options.ProgressFunc(mi, vMeshes.Count - 1);
                }

                string solid_name = string.Format("mesh_{0}", mi);
                if (options.bCombineMeshes == false)
                {
                    if (vMeshes[mi].Name != null && vMeshes[mi].Name.Length > 0)
                    {
                        solid_name = vMeshes[mi].Name;
                    }

                    writer.WriteLine("solid \"{0}\"", solid_name);
                }

                foreach (int ti in mesh.TriangleIndices())
                {
                    Index3i  t = mesh.GetTriangle(ti);
                    Vector3d a = mesh.GetVertex(t.a), b = mesh.GetVertex(t.b), c = mesh.GetVertex(t.c);
                    Vector3d n = MathUtil.Normal(a, b, c);
                    writer.WriteLine("facet normal " + three_floats, n.x, n.y, n.z);
                    writer.WriteLine("outer loop" + writer.NewLine + "vertex " + three_floats, a.x, a.y, a.z);
                    writer.WriteLine("vertex " + three_floats, b.x, b.y, b.z);
                    writer.WriteLine("vertex " + three_floats, c.x, c.y, c.z);
                    writer.WriteLine("endloop" + writer.NewLine + "endfacet");
                }

                if (options.bCombineMeshes == false)
                {
                    writer.WriteLine("endsolid \"{0}\"", solid_name);
                }
            }

            if (options.bCombineMeshes == true)
            {
                writer.WriteLine("endsolid \"mesh\"");
            }

            return(new IOWriteResult(IOCode.Ok, ""));
        }
        public IOWriteResult Write(TextWriter writer, List <WriteMesh> vMeshes, WriteOptions options)
        {
            if (options.groupNamePrefix != null)
            {
                GroupNamePrefix = options.groupNamePrefix;
            }
            if (options.GroupNameF != null)
            {
                GroupNameF = options.GroupNameF;
            }

            int nAccumCountV  = 1;      // OBJ indices always start at 1
            int nAccumCountUV = 1;

            // collect materials
            string sMaterialLib   = "";
            int    nHaveMaterials = 0;

            if (options.bWriteMaterials && options.MaterialFilePath.Length > 0)
            {
                List <GenericMaterial> vMaterials = MeshIOUtil.FindUniqueMaterialList(vMeshes);
                IOWriteResult          ok         = write_materials(vMaterials, options);
                if (ok.code == IOCode.Ok)
                {
                    sMaterialLib   = Path.GetFileName(options.MaterialFilePath);
                    nHaveMaterials = vMeshes.Count;
                }
            }


            if (options.AsciiHeaderFunc != null)
            {
                writer.WriteLine(options.AsciiHeaderFunc());
            }

            if (sMaterialLib != "")
            {
                writer.WriteLine("mtllib {0}", sMaterialLib);
            }

            for (int mi = 0; mi < vMeshes.Count; ++mi)
            {
                IMesh mesh = vMeshes[mi].Mesh;

                if (options.ProgressFunc != null)
                {
                    options.ProgressFunc(mi, vMeshes.Count - 1);
                }

                bool bVtxColors = options.bPerVertexColors && mesh.HasVertexColors;
                bool bNormals   = options.bPerVertexNormals && mesh.HasVertexNormals;

                // use separate UV set if we have it, otherwise write per-vertex UVs if we have those
                bool bVtxUVs = options.bPerVertexUVs && mesh.HasVertexUVs;
                if (vMeshes[mi].UVs != null)
                {
                    bVtxUVs = false;
                }

                int[] mapV = new int[mesh.MaxVertexID];

                // write vertices for this mesh
                foreach (int vi in mesh.VertexIndices())
                {
                    mapV[vi] = nAccumCountV++;
                    Vector3d v = mesh.GetVertex(vi);
                    if (bVtxColors)
                    {
                        Vector3d c = mesh.GetVertexColor(vi);
                        writer.WriteLine("v {0} {1} {2} {3:F8} {4:F8} {5:F8}", v[0], v[1], v[2], c[0], c[1], c[2]);
                    }
                    else
                    {
                        writer.WriteLine("v {0} {1} {2}", v[0], v[1], v[2]);
                    }

                    if (bNormals)
                    {
                        Vector3d n = mesh.GetVertexNormal(vi);
                        writer.WriteLine("vn {0:F10} {1:F10} {2:F10}", n[0], n[1], n[2]);
                    }

                    if (bVtxUVs)
                    {
                        Vector2f uv = mesh.GetVertexUV(vi);
                        writer.WriteLine("vt {0:F10} {1:F10}", uv.x, uv.y);
                    }
                }

                // write independent UVs for this mesh, if we have them
                IIndexMap   mapUV = (bVtxUVs) ? new IdentityIndexMap() : null;
                DenseUVMesh uvSet = null;
                if (vMeshes[mi].UVs != null)
                {
                    uvSet = vMeshes[mi].UVs;
                    int      nUV     = uvSet.UVs.Length;
                    IndexMap fullMap = new IndexMap(false, nUV);                       // [TODO] do we really need a map here? is just integer shift, no?
                    for (int ui = 0; ui < nUV; ++ui)
                    {
                        writer.WriteLine("vt {0:F8} {1:F8}", uvSet.UVs[ui].x, uvSet.UVs[ui].y);
                        fullMap[ui] = nAccumCountUV++;
                    }
                    mapUV = fullMap;
                }

                // check if we need to write usemtl lines for this mesh
                bool bWriteMaterials = nHaveMaterials > 0 &&
                                       vMeshes[mi].TriToMaterialMap != null &&
                                       vMeshes[mi].Materials != null;

                // various ways we can write triangles to minimize state changes...
                // [TODO] support writing materials when mesh has groups!!
                if (options.bWriteGroups && mesh.HasTriangleGroups)
                {
                    write_triangles_bygroup(writer, mesh, mapV, uvSet, mapUV, bNormals);
                }
                else
                {
                    write_triangles_flat(writer, vMeshes[mi], mapV, uvSet, mapUV, bNormals, bWriteMaterials);
                }
            }


            return(new IOWriteResult(IOCode.Ok, ""));
        }
Esempio n. 4
0
        public IOWriteResult Write(TextWriter writer, List <WriteMesh> vMeshes, WriteOptions options)
        {
            int N = vMeshes.Count;

            writer.WriteLine("OFF");

            string three_floats = Util.MakeVec3FormatString(0, 1, 2, options.RealPrecisionDigits);

            int nTotalV = 0, nTotalT = 0, nTotalE = 0;

            // OFF only supports one mesh, so have to collapse all input meshes
            // into a single list, with mapping for triangles
            // [TODO] can skip this if input is a single mesh!
            int[][] mapV = new int[N][];
            for (int mi = 0; mi < N; ++mi)
            {
                nTotalV += vMeshes[mi].Mesh.VertexCount;
                nTotalT += vMeshes[mi].Mesh.TriangleCount;
                nTotalE += 0;
                mapV[mi] = new int[vMeshes[mi].Mesh.MaxVertexID];
            }
            writer.WriteLine(string.Format("{0} {1} {2}", nTotalV, nTotalT, nTotalE));


            // write all vertices, and construct vertex re-map
            int vi = 0;

            for (int mi = 0; mi < N; ++mi)
            {
                IMesh mesh = vMeshes[mi].Mesh;
                if (options.ProgressFunc != null)
                {
                    options.ProgressFunc(mi, 2 * (N - 1));
                }

                foreach (int vid in mesh.VertexIndices())
                {
                    Vector3d v = mesh.GetVertex(vid);
                    writer.WriteLine(three_floats, v.x, v.y, v.z);
                    mapV[mi][vid] = vi;
                    vi++;
                }
            }

            // write all triangles
            for (int mi = 0; mi < N; ++mi)
            {
                IMesh mesh = vMeshes[mi].Mesh;
                if (options.ProgressFunc != null)
                {
                    options.ProgressFunc(N + mi, 2 * (N - 1));
                }

                foreach (int ti in mesh.TriangleIndices())
                {
                    Index3i t = mesh.GetTriangle(ti);
                    t[0] = mapV[mi][t[0]];
                    t[1] = mapV[mi][t[1]];
                    t[2] = mapV[mi][t[2]];
                    writer.WriteLine(string.Format("3 {0} {1} {2}", t[0], t[1], t[2]));
                }
            }

            return(new IOWriteResult(IOCode.Ok, ""));
        }