Esempio n. 1
0
 public TopoVertex(int _id, RHVector3 _pos, Matrix4 trans)
 {
     id  = _id;
     pos = new RHVector3(
         _pos.x * trans.Column0.X + _pos.y * trans.Column0.Y + _pos.z * trans.Column0.Z + trans.Column0.W,
         _pos.x * trans.Column1.X + _pos.y * trans.Column1.Y + _pos.z * trans.Column1.Z + trans.Column1.W,
         _pos.x * trans.Column2.X + _pos.y * trans.Column2.Y + _pos.z * trans.Column2.Z + trans.Column2.W
         );
 }
Esempio n. 2
0
 public bool ContainsPoint(RHVector3 point)
 {
     if (minPoint == null)
     {
         return(false);
     }
     return(point.x >= minPoint.x && point.x <= maxPoint.x &&
            point.y >= minPoint.y && point.y <= maxPoint.y &&
            point.z >= minPoint.z && point.z <= maxPoint.z);
 }
Esempio n. 3
0
        public int VertexId(RHVector3 v)
        {
            //if (rhvertextMap.ContainsKey(v))
            //    return rhvertextMap[v];
            int pos = vertices.Count;

            vertices.Add(new Vector3((float)v.x, (float)v.y, (float)v.z));
            //rhvertextMap.Add(v, pos);
            return(pos);
        }
Esempio n. 4
0
        public bool ProjectPoint(RHVector3 p, out double lambda, RHVector3 pProjected)
        {
            RHVector3 u = v2.pos.Subtract(v1.pos);

            lambda       = p.Subtract(v1.pos).ScalarProduct(u) / u.ScalarProduct(u);
            pProjected.x = v1.pos.x + lambda * u.x;
            pProjected.y = v1.pos.y + lambda * u.y;
            pProjected.z = v1.pos.z + lambda * u.z;
            return(lambda >= 0 && lambda <= 1);
        }
Esempio n. 5
0
        static public double TriangleQualityFromPositions(RHVector3 p1, RHVector3 p2, RHVector3 p3)
        {
            double a        = p1.Distance(p2);
            double b        = p1.Distance(p3);
            double c        = p2.Distance(p3);
            double bc2      = 2 * b * c;
            double sinalpha = Math.Sin(Math.Acos((b * b + c * c - a * a) / (bc2)));

            return(a * (a + b + c) / (bc2 * sinalpha * sinalpha));
        }
Esempio n. 6
0
 public TopoVertex SearchPoint(RHVector3 vertex)
 {
     foreach (TopoVertex v in vertices)
     {
         if (vertex.Distance(v.pos) < TopoModel.epsilon)
         {
             return(v);
         }
     }
     return(null);
 }
Esempio n. 7
0
 public void AddTriangle(RHVector3 v1, RHVector3 v2, RHVector3 v3, int color)
 {
     if (color == MESHCOLOR_ERRORFACE)
     {
         trianglesError.Add(new SubmeshTriangle(VertexId(v1), VertexId(v2), VertexId(v3), color));
     }
     else
     {
         triangles.Add(new SubmeshTriangle(VertexId(v1), VertexId(v2), VertexId(v3), color));
     }
 }
Esempio n. 8
0
        /// <summary>
        /// Checks if all vertices are colinear preventing a normal computation. If point are coliniear the center vertex is
        /// moved in the direction of the edge to allow normal computations.
        /// </summary>
        /// <returns></returns>
        public bool CheckIfColinear()
        {
            RHVector3 d1    = vertices[1].pos.Subtract(vertices[0].pos);
            RHVector3 d2    = vertices[2].pos.Subtract(vertices[1].pos);
            double    angle = d1.Angle(d2);

            if (angle > 0.001 && angle < Math.PI - 0.001)
            {
                return(false);
            }
            return(true);
        }
Esempio n. 9
0
 public void Add(RHVector3 point)
 {
     if (minPoint == null)
     {
         minPoint = new RHVector3(point);
         maxPoint = new RHVector3(point);
     }
     else
     {
         minPoint.StoreMinimum(point);
         maxPoint.StoreMaximum(point);
     }
 }
Esempio n. 10
0
        public int LargestDimension()
        {
            RHVector3 size = box.Size;

            if (size.x > size.y && size.x > size.z)
            {
                return(0);
            }
            if (size.y > size.z)
            {
                return(1);
            }
            return(2);
        }
Esempio n. 11
0
        public TopoVertex SearchPoint(RHVector3 vertex)
        {
            int hash = vertextHash(vertex);

            if (!list.ContainsKey(hash))
            {
                return(null);
            }
            foreach (TopoVertex v in list[hash])
            {
                if (vertex.Distance(v.pos) < TopoModel.epsilon)
                {
                    return(v);
                }
            }
            return(null);
        }
Esempio n. 12
0
        public double alphaBeta; // Sum of dihedral angles to a virtual shared triangle

        public TopoEdgePair(TopoEdge _edgeA, TopoEdge _edgeB)
        {
            edgeA = _edgeA;
            edgeB = _edgeB;
            RHVector3 sharedPoint = null;
            RHVector3 p1 = null, p2 = null;

            if (edgeA.v1 == edgeB.v1)
            {
                sharedPoint = edgeA.v1.pos;
                p1          = edgeA.v2.pos;
                p2          = edgeB.v2.pos;
            }
            else if (edgeA.v1 == edgeB.v2)
            {
                sharedPoint = edgeA.v1.pos;
                p1          = edgeA.v2.pos;
                p2          = edgeB.v1.pos;
            }
            else if (edgeA.v2 == edgeB.v1)
            {
                sharedPoint = edgeA.v1.pos;
                p1          = edgeA.v1.pos;
                p2          = edgeB.v2.pos;
            }
            else if (edgeA.v2 == edgeB.v2)
            {
                sharedPoint = edgeA.v2.pos;
                p1          = edgeA.v1.pos;
                p2          = edgeB.v1.pos;
            }
            RHVector3 d1     = p1.Subtract(sharedPoint);
            RHVector3 d2     = p2.Subtract(sharedPoint);
            RHVector3 normal = d1.CrossProduct(d2);

            normal.NormalizeSafe();
            alphaBeta = normal.AngleForNormalizedVectors(edgeA.faces.First.Value.normal) + normal.AngleForNormalizedVectors(edgeB.faces.First.Value.normal);
            if (alphaBeta > Math.PI) // normal was wrong direction
            {
                alphaBeta = 2 * Math.PI - alphaBeta;
            }
        }
Esempio n. 13
0
        public bool SmoothAspectRatio(TopoModel model, double maxRatio)
        {
            double maxLen, minLen;
            int    maxIdx, minIdx;

            LongestShortestEdgeLength(out maxIdx, out maxLen, out minIdx, out minLen);
            if (minLen == 0)
            {
                return(false);
            }
            if (maxLen > 1 && maxLen / minLen > maxRatio)
            {
                RHVector3 center = edges[maxIdx].v1.pos.Add(edges[maxIdx].v2.pos);
                center.Scale(0.5);
                TopoVertex newVertex = new TopoVertex(0, center);
                model.addVertex(newVertex);
                edges[maxIdx].InsertVertex(model, newVertex);
                return(true);
            }
            return(false);
        }
Esempio n. 14
0
        private bool InPlanePointInside(int d1, int d2, RHVector3 p)
        {
            RHVector3 A   = vertices[0].pos;
            double    ax  = vertices[1].pos[d1] - vertices[0].pos[d1];
            double    ay  = vertices[1].pos[d2] - vertices[0].pos[d2];
            double    bx  = vertices[2].pos[d1] - vertices[0].pos[d1];
            double    by  = vertices[2].pos[d2] - vertices[0].pos[d2];
            double    det = ax * by - ay * bx;

            if (det == 0)
            {
                return(false);
            }
            double alpha     = -(bx * p[d2] - by * p[d1] + A[d1] * by - A[d2] * bx) / det;
            double beta      = (ax * p[d2] - ay * p[d1] - ax * A[d2] + ay * A[d1]) / det;
            bool   intersect = alpha >= epsilonZeroMinus && beta >= epsilonZeroMinus && alpha + beta <= epsilonOnePlus;

            if (intersect && debugIntersections)
            {
                Console.WriteLine("InPlanePointInside alpha=" + alpha + ", beta = " + beta);
            }
            return(intersect);
        }
Esempio n. 15
0
 public RHVector3(RHVector3 orig)
 {
     x = orig.x;
     y = orig.y;
     z = orig.z;
 }
Esempio n. 16
0
 public void StoreMinimum(RHVector3 vec)
 {
     x = Math.Min(x, vec.x);
     y = Math.Min(y, vec.y);
     z = Math.Min(z, vec.z);
 }
Esempio n. 17
0
 public void AddEdge(RHVector3 v1, RHVector3 v2, int color)
 {
     edges.Add(new SubmeshEdge(VertexId(v1), VertexId(v2), color));
 }
Esempio n. 18
0
 public void StoreMaximum(RHVector3 vec)
 {
     x = Math.Max(x, vec.x);
     y = Math.Max(y, vec.y);
     z = Math.Max(z, vec.z);
 }
Esempio n. 19
0
        public void FixColinear(TopoModel model)
        {
            RHVector3 center = vertices[0].pos.Add(vertices[1].pos).Add(vertices[2].pos);

            center.Scale(1 / 3.0);
            int    best     = -1;
            double bestdist = 1e30;

            for (int i = 0; i < 3; i++)
            {
                if (vertices[i].connectedFaces == 1)
                {
                    continue;
                }
                double dist = center.Subtract(vertices[i].pos).Length;
                if (dist < bestdist)
                {
                    bestdist = dist;
                    best     = i;
                }
            }
            if (best == -1)
            {
                throw new Exception("CheckIfColinearAndFix called on isolated triangle");
            }
            edges[(best + 1) % 3].InsertVertex(model, vertices[best]);

            /*
             * // Find an other face sharing vertex
             * TopoTriangle otherFace = null;
             * TopoVertex moveVertex = vertices[best];
             * foreach (TopoTriangle triangle in moveVertex.connectedFacesList)
             * {
             *  if (triangle != this)
             *  {
             *      otherFace = triangle;
             *      break;
             *  }
             * }
             * // Now find the not shared vertex
             * TopoVertex oppositeVertex = null;
             * for (int i = 0; i < 3; i++)
             * {
             *  bool notSame = true;
             *  for (int j = 0; j < 3; j++)
             *  {
             *      if (otherFace.vertices[i] == vertices[j])
             *      {
             *          notSame = false;
             *          break;
             *      }
             *  }
             *  if (notSame)
             *  {
             *      oppositeVertex = otherFace.vertices[i];
             *  }
             * }
             * RHVector3 line = moveVertex.pos.Subtract(oppositeVertex.pos);
             * double lineLength = line.Length;
             * double moveFactor = 0.01;
             * if (0.99 * lineLength > 0.01) moveFactor = 0.01 / lineLength;
             * line.Scale(moveFactor);
             * moveVertex.pos = moveVertex.pos.Add(line);
             * RecomputeNormal();*/
        }
Esempio n. 20
0
 public void ChangeCoordinates(TopoVertex vertex, RHVector3 newPos)
 {
     Remove(vertex);
     vertex.pos = new RHVector3(newPos);
     Add(vertex);
 }
Esempio n. 21
0
        public double DistanceToPlane(RHVector3 pos)
        {
            double d = vertices[0].pos.ScalarProduct(normal);

            return(pos.ScalarProduct(normal) - d);
        }
Esempio n. 22
0
        private bool InPlaneIntersectLineSmall(int idx1, int idx2, RHVector3 a1, RHVector3 a2, RHVector3 b1, RHVector3 b2)
        {
            double ax  = a2[idx1] - a1[idx1];
            double ay  = a2[idx2] - a1[idx2];
            double bx  = b2[idx1] - b1[idx1];
            double by  = b2[idx2] - b1[idx2];
            double det = ax * by - ay * bx;

            if (det == 0)
            {
                return(false);          // Parallel is not intersect
            }
            double alpha = -(bx * b1[idx2] - by * b1[idx1] + a1[idx1] * by - a1[idx2] * bx) / det;

            if (alpha < epsilonZero || alpha > epsilonOneMinus)
            {
                return(false);
            }
            double beta      = -(ax * b1[idx2] - ay * b1[idx1] - ax * a1[idx2] + ay * a1[idx1]) / det;
            bool   intersect = beta >= epsilonZero && beta <= epsilonOneMinus;

            if (intersect && debugIntersections)
            {
                Console.WriteLine("InPlane beta=" + beta);
            }
            return(intersect);
        }
Esempio n. 23
0
 public void SetZColumn(RHVector3 v)
 {
     xz = v.x;
     yz = v.y;
     zz = v.z;
 }
Esempio n. 24
0
 public double VertexDistance(RHVector3 v)
 {
     return(v.x * normal.x + v.y * normal.y + v.z * normal.z - d);
 }
Esempio n. 25
0
        private void TrySplit()
        {
            int newDim          = 0;
            int parentDimension = -1;

            if (parent != null)
            {
                parentDimension = parent.dimension;
            }
            RHVector3 size = box.Size;

            if (parentDimension != 0)
            {
                newDim = 0;
            }
            if (parentDimension != 1 && size.x < size.y)
            {
                newDim = 1;
            }
            if (parentDimension != 2 && size.z > size[newDim])
            {
                newDim = 2;
            }
            int    loop           = 0;
            int    maxLoop        = 4;
            double bestCenter     = 0;
            double bestPercentage = 3000;
            int    bestDim        = 0;

            for (int dim = 0; dim < 3; dim++)
            {
                if (dim == parentDimension)
                {
                    continue;
                }
                for (loop = 0; loop < maxLoop; loop++)
                {
                    int    count    = 0;
                    double testDist = box.minPoint[newDim] + size[newDim] * (1 + loop) / (maxLoop + 1);
                    foreach (TopoTriangle tri in triangles)
                    {
                        if (tri.boundingBox.maxPoint[newDim] < testDist)
                        {
                            count++;
                        }
                    }
                    double percent = 100.0 * (double)count / triangles.Count;
                    if (Math.Abs(50 - percent) < bestPercentage)
                    {
                        bestPercentage = percent;
                        bestCenter     = testDist;
                        bestDim        = dim;
                    }
                }
            }
            if (bestPercentage < 5)
            {
                nextTrySplit = (nextTrySplit * 3) / 2;
                return; // not effective enough
            }
            left           = new TopoTriangleNode(this);
            right          = new TopoTriangleNode(this);
            middle         = new TopoTriangleNode(this);
            dimension      = newDim;
            middlePosition = bestCenter;
            foreach (TopoTriangle tri in triangles)
            {
                if (tri.boundingBox.maxPoint[dimension] < middlePosition)
                {
                    left.AddTriangle(tri);
                }
                else if (tri.boundingBox.minPoint[dimension] > middlePosition)
                {
                    right.AddTriangle(tri);
                }
                else
                {
                    middle.AddTriangle(tri);
                }
            }
            triangles = null;
        }
Esempio n. 26
0
        public bool Intersects(TopoTriangle tri)
        {
            // First detect shared edges for more reliable and faster tests
            TopoVertex[] shared = new TopoVertex[3];
            TopoVertex[] uniqueA = new TopoVertex[3];
            TopoVertex[] uniqueB = new TopoVertex[3];
            int          nShared = 0, nUniqueA = 0, nUniqueB = 0;

            for (int i = 0; i < 3; i++)
            {
                bool isDouble = false;
                for (int j = 0; j < 3; j++)
                {
                    if (vertices[i] == tri.vertices[j])
                    {
                        shared[nShared++] = vertices[i];
                        isDouble          = true;
                        break;
                    }
                }
                if (!isDouble)
                {
                    uniqueA[nUniqueA++] = vertices[i];
                }
            }
            if (nShared > 0)
            {
                for (int i = 0; i < 3; i++)
                {
                    bool isDouble = false;
                    for (int j = 0; j < nShared; j++)
                    {
                        if (tri.vertices[i] == shared[j])
                        {
                            isDouble = true;
                            break;
                        }
                    }
                    if (!isDouble)
                    {
                        uniqueB[nUniqueB++] = tri.vertices[i];
                    }
                }
                if (nShared == 1)
                {
                    return(IntersectsSharedVertex(shared[0], uniqueA, uniqueB, tri));
                }
                if (nShared == 2)
                {
                    return(IntersectsSharedEdge(shared, uniqueA[0], uniqueB[0], tri));
                }
                return(true);
            }
            // Nice to read but unoptimized intersection computation
            RHMatrix3 A  = new RHMatrix3();
            RHVector3 p1 = vertices[1].pos.Subtract(vertices[0].pos);
            RHVector3 p2 = vertices[2].pos.Subtract(vertices[0].pos);

            A.SetXColumn(p1);
            A.SetYColumn(p2);
            RHVector3 P  = new RHVector3(vertices[0].pos);
            RHVector3 q1 = tri.vertices[1].pos.Subtract(tri.vertices[0].pos);
            RHVector3 q2 = tri.vertices[2].pos.Subtract(tri.vertices[0].pos);
            RHVector3 r1 = tri.vertices[0].pos.Subtract(P); // r2 == r1!
            RHVector3 r3 = tri.vertices[2].pos.Subtract(P);

            A.SetZColumn(q1);
            double detAq1 = A.Determinant;

            A.SetZColumn(q2);
            double detAq2 = A.Determinant;
            //A.SetZColumn(q3);
            double detAq3 = detAq1 - detAq2; // A.Determinant;

            A.SetZColumn(r1);
            double detAr1 = A.Determinant;
            //A.SetZColumn(r3);
            double detAr3    = detAr1 + detAq2; // A.Determinant;
            int    intersect = 0;

            if (detAq1 == 0 && detAq2 == 0 && detAq3 == 0) // same plane case
            {
                if (detAr1 != 0)
                {
                    return(false);             // other parallel plance
                }
                // Select plane for computation x-y or x-z based on normal
                int idx1, idx2;
                DominantAxis(out idx1, out idx2);
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[0].pos, vertices[1].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[1].pos, vertices[2].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[0].pos, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[1].pos, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (InPlaneIntersectLine(idx1, idx2, vertices[2].pos, vertices[0].pos, tri.vertices[2].pos, tri.vertices[0].pos))
                {
                    return(true);
                }
                // Test if point inside. 1 test per triangle is enough
                if (InPlanePointInside(idx1, idx2, tri.vertices[0].pos))
                {
                    return(true);
                }
                if (InPlanePointInside(idx1, idx2, tri.vertices[1].pos))
                {
                    return(true);
                }
                if (InPlanePointInside(idx1, idx2, tri.vertices[2].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[0].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[1].pos))
                {
                    return(true);
                }
                if (tri.InPlanePointInside(idx1, idx2, vertices[2].pos))
                {
                    return(true);
                }
                return(false);
            }
            double beta1 = -1, beta2 = -1, beta3 = -1;

            if (detAq1 != 0)
            {
                beta1 = -detAr1 / detAq1;
                if (beta1 >= epsilonZeroMinus && beta1 <= epsilonOnePlus)
                {
                    intersect = 1;
                }
            }
            if (detAq2 != 0)
            {
                beta2 = -detAr1 / detAq2;
                if (beta2 >= epsilonZeroMinus && beta2 <= epsilonOnePlus)
                {
                    intersect |= 2;
                }
            }
            if (detAq3 != 0)
            {
                beta3 = -detAr3 / detAq3;
                if (beta3 >= epsilonZeroMinus && beta3 <= epsilonOnePlus)
                {
                    intersect |= 4;
                }
            }
            if (intersect == 7)
            { // Special case intersection in one point caused 3 valid betas
                if (Math.Abs(beta1) < epsilonZero)
                {
                    intersect = 6;
                }
                else if (Math.Abs(beta3) < epsilonZero)
                {
                    intersect = 3;
                }
                else
                {
                    intersect = 5;
                }
            }
            //if (intersect == 0) return false; // Lies on wrong side
            RHVector3 T = null, t = null;

            if ((intersect & 1) == 1)
            {
                T = new RHVector3(q1);
                T.Scale(beta1);
                T.AddInternal(tri.vertices[0].pos);
            }
            if ((intersect & 2) == 2)
            {
                if (T == null)
                {
                    T = new RHVector3(q2);
                    T.Scale(beta2);
                    T.AddInternal(tri.vertices[0].pos);
                }
                else
                {
                    q2.Scale(beta2);
                    q2.AddInternal(tri.vertices[0].pos);
                    t = q2.Subtract(T);
                }
            }
            if ((intersect & 4) == 4 && T != null && (t == null || t.Length < epsilonZero))
            {
                RHVector3 q3 = tri.vertices[1].pos.Subtract(tri.vertices[2].pos);
                q3.Scale(beta3);
                q3.AddInternal(tri.vertices[2].pos);
                t = q3.Subtract(T);
            }
            if (t == null)
            {
                return(false);
            }
            if (t.Length < epsilonZero)
            { // Only one point touches the plane
                int idx1, idx2;
                DominantAxis(out idx1, out idx2);
                return(InPlanePointInside(idx1, idx2, T));
            }
            // Compute intersection points with this triangle
            double d1 = p1.x * t.y - p1.y * t.x;
            double d2 = p1.x * t.z - p1.z * t.x;
            double delta1 = -1, delta2 = -1, delta3 = -1, gamma1 = -1, gamma2 = -1, gamma3 = -1;

            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta1 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma1 = -(p1.x * T.y - p1.y * T.x - p1.x * P.y + p1.y * P.x) / d1;
                }
                else
                {
                    delta1 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma1 = -(p1.x * T.z - p1.z * T.x - p1.x * P.z + p1.z * P.x) / d2;
                }
            }
            d1 = p2.x * t.y - p2.y * t.x;
            d2 = p2.x * t.z - p2.z * t.x;
            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta2 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma2 = -(p2.x * T.y - p2.y * T.x - p2.x * P.y + p2.y * P.x) / d1;
                }
                else
                {
                    delta2 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma2 = -(p2.x * T.z - p2.z * T.x - p2.x * P.z + p2.z * P.x) / d2;
                }
            }
            P.AddInternal(p1);
            p2.SubtractInternal(p1); // p2 is now p3!
            d1 = p2.x * t.y - p2.y * t.x;
            d2 = p2.x * t.z - p2.z * t.x;
            if (Math.Abs(d1) > epsilonZero || Math.Abs(d2) > epsilonZero)
            {
                if (Math.Abs(d1) > Math.Abs(d2))
                {
                    delta3 = -(t.x * T.y - t.y * T.x + P.x * t.y - P.y * t.x) / d1;
                    gamma3 = -(p2.x * T.y - p2.y * T.x - p2.x * P.y + p2.y * P.x) / d1;
                }
                else
                {
                    delta3 = -(t.x * T.z - t.z * T.x + P.x * t.z - P.z * t.x) / d2;
                    gamma3 = -(p2.x * T.z - p2.z * T.x - p2.x * P.z + p2.z * P.x) / d2;
                }
            }
            // Check for line intersection inside the line. Hits at the vertices to not count!
            if (delta1 >= epsilonZero && delta1 <= epsilonOneMinus && gamma1 >= epsilonZero && gamma1 <= epsilonOneMinus)
            {
                return(true);
            }
            if (delta2 >= epsilonZero && delta2 <= epsilonOneMinus && gamma2 >= epsilonZero && gamma2 <= epsilonOneMinus)
            {
                return(true);
            }
            if (delta3 >= epsilonZero && delta3 <= epsilonOneMinus && gamma3 >= epsilonZero && gamma3 <= epsilonOneMinus)
            {
                return(true);
            }
            // Test if intersection is inside triangle
            intersect = 0;
            if (delta1 >= epsilonZeroMinus && delta1 <= epsilonOnePlus)
            {
                intersect |= 1;
            }
            if (delta2 >= epsilonZeroMinus && delta2 <= epsilonOnePlus)
            {
                intersect |= 2;
            }
            if (delta3 >= epsilonZeroMinus && delta3 <= epsilonOnePlus)
            {
                intersect |= 4;
            }

            /*   if (gamma1 == 0) gamma1 = -1;
             * if (gamma2 == 0) gamma2 = -1;
             * if (gamma3 == 0) gamma3 = -1;*/
            if (gamma1 == 0)
            {
                intersect &= ~1;
            }
            if (gamma2 == 0)
            {
                intersect &= ~2;
            }
            if (gamma3 == 0)
            {
                intersect &= ~4;
            }

            /*       if ((intersect & 3) == 3) return gamma1 * gamma2 < 0;
             *     if ((intersect & 5) == 5) return gamma1 * gamma3 < 0;
             *     if ((intersect & 6) == 6) return gamma3 * gamma2 < 0;*/
            if ((intersect & 3) == 3)
            {
                if (gamma1 * gamma2 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            if ((intersect & 5) == 5)
            {
                if (gamma1 * gamma3 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            if ((intersect & 6) == 6)
            {
                if (gamma3 * gamma2 < 0)
                {
                    return(true);
                }
                else
                {
                    return(false);
                }
            }
            // if (intersect!=0) happens only with numeric problems
            //    return true;
            return(false); // No intersection found :-)
        }
Esempio n. 27
0
 public TopoPlane(RHVector3 _normal, RHVector3 pointOnPlane)
 {
     normal = new RHVector3(_normal);
     normal.NormalizeSafe();
     d = pointOnPlane.ScalarProduct(normal);
 }
Esempio n. 28
0
 public void SetXColumn(RHVector3 v)
 {
     xx = v.x;
     yx = v.y;
     zx = v.z;
 }
Esempio n. 29
0
        public void addIntersectionToSubmesh(Submesh mesh, TopoTriangle triangle, bool addEdges, int color)
        {
            int[] outside = new int[3];
            int[] inside = new int[3];
            int   nOutside = 0, nInside = 0;
            int   i;

            for (i = 0; i < 3; i++)
            {
                if (VertexDistance(triangle.vertices[i].pos) > 0)
                {
                    outside[nOutside++] = i;
                }
                else
                {
                    inside[nInside++] = i;
                }
            }
            if (nOutside != 1 && nOutside != 2)
            {
                return;
            }
            RHVector3[] intersections  = new RHVector3[3];
            int         nIntersections = 0;

            for (int iInside = 0; iInside < nInside; iInside++)
            {
                for (int iOutside = 0; iOutside < nOutside; iOutside++)
                {
                    RHVector3 v1    = triangle.vertices[inside[iInside]].pos;
                    RHVector3 v2    = triangle.vertices[outside[iOutside]].pos;
                    double    dist1 = VertexDistance(v1);
                    double    dist2 = VertexDistance(v2);
                    double    pos   = Math.Abs(dist1) / Math.Abs(dist2 - dist1);
                    intersections[nIntersections++] = new RHVector3(
                        v1.x + pos * (v2.x - v1.x),
                        v1.y + pos * (v2.y - v1.y),
                        v1.z + pos * (v2.z - v1.z)
                        );
                }
            }
            if (nInside == 2)
            {
                if (outside[0] == 1)
                {
                    mesh.AddTriangle(triangle.vertices[inside[1]].pos, triangle.vertices[inside[0]].pos, intersections[1], color);
                    mesh.AddTriangle(triangle.vertices[inside[0]].pos, intersections[0], intersections[1], color);
                }
                else
                {
                    mesh.AddTriangle(triangle.vertices[inside[0]].pos, triangle.vertices[inside[1]].pos, intersections[0], color);
                    mesh.AddTriangle(triangle.vertices[inside[1]].pos, intersections[1], intersections[0], color);
                }
            }
            else
            {
                if (inside[0] == 1)
                {
                    mesh.AddTriangle(triangle.vertices[inside[0]].pos, intersections[1], intersections[0], color);
                }
                else
                {
                    mesh.AddTriangle(triangle.vertices[inside[0]].pos, intersections[0], intersections[1], color);
                }
            }
            if (addEdges)
            {
                if (nInside == 2)
                {
                    mesh.AddEdge(triangle.vertices[inside[0]].pos, triangle.vertices[inside[1]].pos, triangle.edges[0].connectedFaces == 2 ? Submesh.MESHCOLOR_EDGE : Submesh.MESHCOLOR_ERROREDGE);
                    mesh.AddEdge(triangle.vertices[inside[0]].pos, intersections[0], triangle.edges[1].connectedFaces == 2 ? Submesh.MESHCOLOR_EDGE : Submesh.MESHCOLOR_ERROREDGE);
                    mesh.AddEdge(triangle.vertices[inside[1]].pos, intersections[1], triangle.edges[2].connectedFaces == 2 ? Submesh.MESHCOLOR_EDGE : Submesh.MESHCOLOR_ERROREDGE);
                }
                else
                {
                    for (int iInter = 0; iInter < nIntersections; iInter++)
                    {
                        mesh.AddEdge(triangle.vertices[inside[0]].pos, intersections[iInter], triangle.edges[(inside[0] + 2 * iInter) % 3].connectedFaces == 2 ? Submesh.MESHCOLOR_EDGE : Submesh.MESHCOLOR_ERROREDGE);
                    }
                }
            }
            if (nIntersections == 2)
            {
                mesh.AddEdge(intersections[0], intersections[1], Submesh.MESHCOLOR_CUT_EDGE);
            }
        }
Esempio n. 30
0
 public void SetYColumn(RHVector3 v)
 {
     xy = v.x;
     yy = v.y;
     zy = v.z;
 }