// コピーコンストラクタ
        public SigmaNormalClassifier(SigmaNormalClassifier C)
        {
            this.C = new BinaryState(C.C);
            //this.A = C.A;
            this.P       = C.P;
            this.Epsilon = C.Epsilon;
            this.F       = C.F;
            this.N       = C.N;
            this.Exp     = C.Exp;
            this.Ts      = C.Ts;
            this.As      = C.As;
            this.Kappa   = C.Kappa;


            this.Epsilon_0 = C.Epsilon_0;


            this.St           = C.St;
            this.M            = C.M;
            this.S            = C.S;
            this.GenerateTime = Configuration.T;
            this.ExpThreshold = C.ExpThreshold;
            this.EpsilonList  = new double[Configuration.LookBackEpsilon + 1];
            this.WinningRate  = new double[Configuration.LookBackEpsilon];
            // はじめは消されにくいように
            for (int i = 0; i < this.WinningRate.Count(); i++)
            {
                this.WinningRate[i] = C.WinningRate[i];
            }
            this.ConvergenceFlag = false;
        }
Esempio n. 2
0
 //// 使ってない?
 //public NormalClassifier( int Length, string Type )
 //{
 //    // Stateの様式決定
 //    if( Type == "Binary" )
 //    {
 //        this.C = new BinaryState( Length );
 //        this.C.GetState();  // 仮
 //    }
 //    this.A = '1';  // 仮
 //    if( Configuration.MT.Next() % 2 == 0 )
 //    {
 //        this.A = '0';
 //    }
 //    this.P = 10;   // 仮
 //    this.Epsilon = 0.1; // 仮
 //    this.F = 10;  // 仮
 //    this.N = 1;
 //    this.Epsilon_0 = Configuration.Epsilon_0;
 //    this.St = 0;
 //    this.M = 0;
 //    this.S = 0;
 //}
 // コピーコンストラクタ
 public SigmaNormalClassifier( SigmaNormalClassifier C )
 {
     this.C = new BinaryState( C.C );
     this.A = C.A;
     this.P = C.P;
     this.Epsilon = C.Epsilon;
     this.F = C.F;
     this.N = C.N;
     this.Exp = C.Exp;
     this.Ts = C.Ts;
     this.As = C.As;
     this.Kappa = C.Kappa;
     this.Epsilon_0 = C.Epsilon_0;
     this.St = C.St;
     this.M = C.M;
     this.S = C.S;
     this.GenerateTime = Configuration.T;
     this.ExpThreshold = C.ExpThreshold;
     this.EpsilonList = new double[Configuration.LookBackEpsilon + 1];
     this.WinningRate = new double[Configuration.LookBackEpsilon];
     // はじめは消されにくいように
     for( int i = 0; i < this.WinningRate.Count(); i++ )
     {
         this.WinningRate[i] = C.WinningRate[i];
     }
     this.ConvergenceFlag = false;
 }
        /// <summary>
        /// 総当たり評価
        /// </summary>
        public void RoundRobin()
        {
            //double[,] Results = new double[this.CList.Count, this.CList.Count];

            //// 総当たり比較
            //for( int i = 0; i < this.CList.Count - 1; i++ )	// 比較元
            //{
            //	for( int j = i + 1; j < this.CList.Count; j++ )
            //	{
            //		//if(this.CList[i].Kappa > this.CList[j].Kappa)
            //		if( this.CList[i].F > this.CList[j].F )
            //		{
            //			Results[i, j] = 1;	// 勝ち点1
            //		}
            //		//else if(this.CList[i].Kappa == this.CList[j].Kappa)
            //		else if( this.CList[i].F == this.CList[j].F )
            //		{
            //			Results[i, j] = 0.5;	// 引き分け点0.5
            //		}
            //		else
            //		{
            //			Results[i, j] = 0;
            //		}
            //	}
            //}

            // 勝率計算
            for (int i = 0; i < this.CList.Count; i++)
            {
                //double WinningPoint = 0;
                //for( int j = 0; j < i; j++ )
                //{
                //	WinningPoint += 1 - Results[j, i];
                //}
                //for( int j = i + 1; j < this.CList.Count; j++ )
                //{
                //	WinningPoint += Results[i, j];
                //}

                SigmaNormalClassifier SNC = ( SigmaNormalClassifier )this.CList[i];
                // 移動
                for (int index = SNC.WinningRate.Count() - 1; index > 0; index--)
                {
                    SNC.WinningRate[index] = SNC.WinningRate[index - 1];
                }

                //SNC.WinningRate[0] = WinningPoint / ( this.CList.Count - 1 );
                SNC.WinningRate[0] = SNC.F;
            }
        }
        protected override double DeletionVote(Classifier C, double AvFitness)
        {
            // SigmaNormalClassifier前提
            SigmaNormalClassifier SNC = ( SigmaNormalClassifier )C;

            double Vote = SNC.As * SNC.N;

            //Console.WriteLine("AS: " + SNC.As + " N: " + SNC.N);

            if ((SNC.Exp > Configuration.Theta_del) && (SNC.WinningRate.Average() / SNC.N < Configuration.Delta * AvFitness))
            {
                if (SNC.WinningRate.Average() == 0)
                {
                    //Console.WriteLine("0 : " + Vote);
                    return(Vote);
                }
                Vote *= AvFitness / (SNC.WinningRate.Average() / SNC.N);
                //Console.WriteLine("hoge");
            }

            //Console.WriteLine(SNC.WinningRate.Average() + " : " + Vote);
            return(Vote);
        }
Esempio n. 5
0
        // situationに合うものをPopulationから取り、足りないときはCovering
        protected override void Covering( State S, Population P )
        {
            while( this.CList.Count == 0 )
            {
                // situationにあうものをPopulationから探す
                this.CList = P.MatchSituation( S );

                // Actionの種類
                List<char> Actions = new List<char>();
                int NumberOfActions = 0;

                // Multiplexer(2進数)
                if( Configuration.Type == "Binary" )
                {
                    Actions.Add( '0' );
                    Actions.Add( '1' );
                    foreach( Classifier C in this.CList )
                    {
                        Actions.Remove( C.A );
                    }
                    NumberOfActions = 2 - Actions.Count;
                }

                // MatchSetにある行動が少ないとき
                if( NumberOfActions < Configuration.Theta_mna )
                {
                    // 一部を変化させたCondition
                    State state = new BinaryState( S );
                    state.Covering();

                    Classifier CC;
                    if( Configuration.ASName == "CS" || Configuration.ASName == "MaxCS" || Configuration.ASName == "Max" || Configuration.ASName == "Updatee0CS" )
                    {
                        CC = new SigmaNormalClassifier( state, Actions, Configuration.ExpThreshold );
                    }
                    else
                    {
                        CC = new NormalClassifier( state, Actions );
                    }
                    P.Add( CC );
                    // 整理
                    P.Delete();
                    this.CList = new List<Classifier>();
                }
            }
        }
Esempio n. 6
0
        public override void RunGA( State Situation, Population P )
        {
            double NumerositySum = 0.0;
            double TimeStampSum = 0.0;

            foreach( Classifier C in this.CList )
            {
                NumerositySum += C.N;
                TimeStampSum += C.Ts * C.N;
            }

            if( Configuration.T - TimeStampSum / NumerositySum > Configuration.Theta_GA )
            {
                foreach( Classifier C in this.CList )
                {
                    C.Ts = Configuration.T;
                }

                Classifier Parent_1 = this.SelectOffspring();
                Classifier Parent_2 = this.SelectOffspring();
                Classifier Child_1 = new SigmaNormalClassifier( ( SigmaNormalClassifier )Parent_1 );
                Classifier Child_2 = new SigmaNormalClassifier( ( SigmaNormalClassifier )Parent_2 );

                ///nakata added
                Child_1.F /= Child_1.N;
                Child_2.F /= Child_2.N;
                //////////////

                Child_1.N = Child_2.N = 1;
                Child_1.Exp = Child_2.Exp = 0;
                Child_1.St = Child_2.St = 0;
                Child_1.M = Child_2.M = 0;
                Child_1.S = Child_2.S = 0;
                //Child_1.Epsilon_0 = Child_2.Epsilon_0 = Configuration.Epsilon_0;

                SigmaNormalClassifier SNP1 = ( SigmaNormalClassifier )Parent_1;
                SigmaNormalClassifier SNP2 = ( SigmaNormalClassifier )Parent_2;
                SigmaNormalClassifier SNC1 = ( SigmaNormalClassifier )Child_1;
                SigmaNormalClassifier SNC2 = ( SigmaNormalClassifier )Child_2;

                // 交叉
                if( Configuration.MT.NextDouble() < Configuration.Chai )
                {
                    Child_1.Crossover( Child_2 );
                    Child_1.P = ( Parent_1.P + Parent_2.P ) / 2;
                    //Child_1.Epsilon = Parent_1.Epsilon + Parent_2.Epsilon;
                    Child_1.Epsilon = ( Parent_1.Epsilon + Parent_2.Epsilon ) / 2;
                    Child_1.F = ( Parent_1.F + Parent_2.F ) / 2;
                    //Child_1.M = ( Parent_1.M + Parent_2.M ) / 2;
                    //Child_1.S = ( Parent_1.S + Parent_2.S ) / 2;
                    Child_1.Epsilon_0 = ( Parent_1.Epsilon_0 + Parent_2.Epsilon_0 ) / 2;
                    //Child_1.Epsilon_0 = Math.Min(Parent_1.Epsilon_0, Parent_2.Epsilon_0);
                    Child_2.P = Child_1.P;
                    Child_2.Epsilon = Child_1.Epsilon;
                    Child_2.F = Child_1.F;
                    //Child_2.M = Child_1.M;
                    //Child_2.S = Child_1.S;
                    Child_2.Epsilon_0 = Child_1.Epsilon_0;

                    for( int i = 0; i < SNC1.WinningRate.Count(); i++ )
                    {
                        SNC1.WinningRate[i] = SNC2.WinningRate[i] = ( SNP1.WinningRate[i] + SNP2.WinningRate[i] ) / 2;
                    }
                }

                Child_1.F *= 0.1;
                Child_2.F *= 0.1;

                for( int i = 0; i < SNC1.WinningRate.Count(); i++ )
                {
                    SNC1.WinningRate[i] *= 0.1;
                    SNC2.WinningRate[i] *= 0.1;
                }

                // bothChild
                Child_1.Mutation( Situation );
                Child_2.Mutation( Situation );

                if( Configuration.DoGASubsumption )
                {
                    if( Parent_1.DoesSubsume( Child_1 ) )
                    {
                        Parent_1.N++;
                    }
                    else if( Parent_2.DoesSubsume( Child_1 ) )
                    {
                        Parent_2.N++;
                    }
                    else
                    {
                        P.Insert( Child_1 );
                    }
                    P.Delete();

                    if( Parent_1.DoesSubsume( Child_2 ) )
                    {
                        Parent_1.N++;
                    }
                    else if( Parent_2.DoesSubsume( Child_2 ) )
                    {
                        Parent_2.N++;
                    }
                    else
                    {
                        P.Insert( Child_2 );
                    }
                    P.Delete();
                }
                else
                {
                    P.Insert( Child_1 );
                    P.Delete();
                    P.Insert( Child_2 );
                    P.Delete();
                }

            }
        }
        //学習終了後に圧縮にする
        public override void Compact()
        {
            List <Classifier> copyActionSet = new List <Classifier>();

            foreach (Classifier classifier in CList)
            {
                copyActionSet.Add(classifier);
            }

            int N = copyActionSet.Count;

            for (int i = 0; i < N; i++)
            {
                #region subsume
                Classifier Cl = null;

                //なかに最も一般的な分類子をClにする
                foreach (Classifier C in copyActionSet)
                {
                    if (C.CouldSubsume())
                    {
                        if ((Cl == null) || (C.C.NumberOfSharp > Cl.C.NumberOfSharp) || ((C.C.NumberOfSharp == Cl.C.NumberOfSharp) && (Configuration.MT.NextDouble() < 0.5)))
                        {
                            Cl = C;
                        }
                    }
                }

                //Cl が包摂できる分類子を吸収する
                if (Cl != null)
                {
                    // 削除中にforeachできない
                    List <Classifier> CL = new List <Classifier>();

                    foreach (Classifier C in copyActionSet)
                    {
                        if (Cl.IsMoreGeneral(C))
                        {
                            SigmaNormalClassifier Snc_ko  = (SigmaNormalClassifier)C;
                            SigmaNormalClassifier Snc_oya = (SigmaNormalClassifier)Cl;
                            //10の数字は適当 可変にするか? 1/10にする 10-7 あんまり変わらない
                            //分散が同じの判断基準 他に??t test を使う 予定  特殊化がでない
                            //
                            //double t = (Snc_oya.M - Snc_ko.M)/Math.Sqrt(Snc_oya.S/30 + Snc_ko.S/30);

                            //double studentT = StudentT.InvCDF(0, 1, 60, 0.005);

                            //if (t < studentT || t > Math.Abs(studentT))//t test で有意差がある 包摂しない
                            //{

                            //}
                            // else//有意差がない 統合しでもよい ただ 特殊化ルールどう識別するか
                            //{
                            if (/*Math.Abs(Cl.M - C.M) < 10 &&*/
                                // Math.Abs(Cl.Epsilon_0 - C.Epsilon_0)< 10&&
                                // Cl.Kappa == 1
                                //&& Snc_oya.Epsilon < Snc_ko.Epsilon
                                (Cl.Epsilon_0 < C.Epsilon_0 || Math.Abs(Cl.Epsilon_0 - C.Epsilon_0) < Cl.Epsilon_0 / 10)
                                //&& Math.Abs(Cl.Epsilon_0 - C.Epsilon_0) < 10//case 1 +- 10
                                // Cl.Epsilon < C.Epsilon
                                && Snc_ko.IsConvergenceEpsilon() &&
                                Snc_oya.IsConvergenceEpsilon()

                                ) //
                            {
                                Cl.N += C.N;
                                // 包摂された、削除したいClassifier C をCLに登録
                                CL.Add(C);
                            }
                            // }
                        }
                    }

                    foreach (Classifier C in CL)
                    {
                        this.Remove(C);//包摂された分類子 C を pop からCを削除
                    }
                }

                //最も一般化されるもの copyActionSetからを削除 
                copyActionSet.Remove(Cl);

                #endregion
            }
        }
Esempio n. 8
0
        public override void Update(Population Pop, double P, StdList Sigma)
        {
            double SumNumerosity = 0;

            foreach (Classifier C in this.CList)
            {
                SumNumerosity += C.N;
            }

            foreach (Classifier C in this.CList)
            {
                C.Exp++;

                if (C.Exp < 1 / Configuration.Beta)
                {
                    C.P  += (P - C.P) / C.Exp;
                    C.As += (SumNumerosity - C.As) / C.Exp;
                }
                else
                {
                    C.P  += Configuration.Beta * (P - C.P);
                    C.As += Configuration.Beta * (SumNumerosity - C.As);
                }

                // 標準偏差計算
                C.St++;
                double X = P - C.M;
                C.M += X / C.St;
                C.S += (C.St - 1) * X * X / C.St;                  //あっている??
                if (double.IsNaN(C.S))
                {
                    Console.ReadLine();
                }


                if (C.GetType().Name == "SigmaNormalClassifier")
                {
                    // このIterationまでのepsilonを記録ずらし
                    SigmaNormalClassifier SNC = ( SigmaNormalClassifier )C;
                    for (int index = SNC.EpsilonList.Count() - 1; index > 0; index--)
                    {
                        SNC.EpsilonList[index] = SNC.EpsilonList[index - 1];
                    }

                    SNC.EpsilonList[0] = Math.Sqrt(C.S / (C.St - 1));



#region 分類子が照合する全状態のVTの分散と平均を使って e0 を推測  chou 160107
                    //分類子が照合する全状態のVTの分散と平均を使って e0 を推測  chou 160107
                    if (Configuration.IsConvergenceVT)
                    {
                        if (C.Exp > 2)                      //0120 cho
                        {
                            if (SNC.IsConvergenceEpsilon()) //分類子のstd が収束するときepsilon を更新
                            {
                                C.Epsilon = SNC.EpsilonList[0];
                            }
                            else//epsilon収束しない場合 強化学習
                            {
                                if (C.Exp < Configuration.Beta)
                                {
                                    C.Epsilon += (Math.Abs(P - C.P) - C.Epsilon) / C.Exp;
                                }
                                else
                                {
                                    C.Epsilon += Configuration.Beta * (Math.Abs(P - C.P) - C.Epsilon);
                                }
                            }
                        }


                        Classifier cl0 = new NormalClassifier();

                        cl0.S  = 0;
                        cl0.M  = 0;
                        cl0.St = 0;
                        List <StdList> cpStdLists = new List <StdList>();

                        foreach (var std in Configuration.ConvergentedVT)
                        {
                            if (std.IsIncluded(C.C.state))
                            {
                                cpStdLists.Add(std.Clone()); //クローンメソット  
                            }
                        }
                        if (cpStdLists.Count == 1)
                        {
                            C.Epsilon_0 = cpStdLists[0].S + Configuration.Epsilon_0;
                        }
                        else
                        {
                            foreach (var std in cpStdLists)
                            {
                                //St 出現回数
                                cl0.St += std.T;
                                cl0.M  += std.M * std.T;
                            }

                            //ここst= 0 , cl0.M がNULLになる
                            cl0.M = cl0.M / cl0.St;

                            foreach (var std in cpStdLists)
                            {
                                cl0.S += std.T * Math.Pow(std.S, 2) + std.T * Math.Pow((cl0.M - std.M), 2);
                            }

                            cl0.S = Math.Sqrt(cl0.S / cl0.St);

                            C.Epsilon_0 = cl0.S + Configuration.Epsilon_0;
                        }
                    }
                    #endregion


                    #region tatumi 160106 XCS-SAC  VTが全部収束したら 加重平均でe0更新
                    //if (Configuration.IsConvergenceVT)
                    //{
                    //    //tatumi 160106 XCS-SAC  VTが全部収束したら 加重平均でe0更新
                    //    if (C.Exp > 2 && SNC.IsConvergenceEpsilon())//0120 cho
                    //    {

                    //        C.Epsilon = SNC.EpsilonList[0];
                    //    }

                    //    double WeightedSum = 0;
                    //    int WeightedCount = 0;
                    //    foreach (StdList SL in Configuration.Stdlist)
                    //    {
                    //        if (SL.IsIncluded(C.C.state))
                    //        {
                    //            if (!double.IsNaN(SL.S))
                    //            {
                    //                WeightedSum += (SL.T - 1) * Math.Pow(SL.S, 2);
                    //                WeightedCount += SL.T;
                    //            }
                    //        }
                    //    }
                    //    // 下駄適応済み
                    //    if (WeightedCount > 1)
                    //    {
                    //        WeightedSum = Math.Sqrt(WeightedSum / (WeightedCount - 1)) + Configuration.Epsilon_0;
                    //    }
                    //    else
                    //    {
                    //        WeightedSum = Configuration.Epsilon_0;
                    //    }
                    //    C.Epsilon_0 = WeightedSum;
                    //}
                    //else
                    //{
                    //    if (C.Exp < Configuration.Beta)
                    //    {
                    //        C.Epsilon += (Math.Abs(P - C.P) - C.Epsilon) / C.Exp;
                    //    }
                    //    else
                    //    {
                    //        C.Epsilon += Configuration.Beta * (Math.Abs(P - C.P) - C.Epsilon);
                    //    }
                    //}
                    #endregion
                }
                else                 //SigmaNormalClassifier ではない場合
                {
                    //if( C.Exp < Configuration.Beta )//9-23 張 ここscript は exp<Beta
                    if (C.Exp < Configuration.Beta)
                    {
                        C.Epsilon += (Math.Abs(P - C.P) - C.Epsilon) / C.Exp;
                    }
                    else
                    {
                        C.Epsilon += Configuration.Beta * (Math.Abs(P - C.P) - C.Epsilon);
                    }
                }
            }

            this.UpdateFitness();

            if (Configuration.DoActionSetSubsumption)
            {
                this.Subsumption(Pop);
            }
        }
Esempio n. 9
0
        public override void RunGA(State Situation, Population P)
        {
            double NumerositySum = 0.0;
            double TimeStampSum  = 0.0;

            foreach (Classifier C in this.CList)
            {
                NumerositySum += C.N;
                TimeStampSum  += C.Ts * C.N;
            }

            if (Configuration.T - TimeStampSum / NumerositySum > Configuration.Theta_GA)
            {
                foreach (Classifier C in this.CList)
                {
                    C.Ts = Configuration.T;
                }

                Classifier Parent_1 = this.SelectOffspring();
                Classifier Parent_2 = this.SelectOffspring();
                Classifier Child_1  = new SigmaNormalClassifier(( SigmaNormalClassifier )Parent_1);
                Classifier Child_2  = new SigmaNormalClassifier(( SigmaNormalClassifier )Parent_2);

                ///nakata added
                Child_1.F /= Child_1.N;
                Child_2.F /= Child_2.N;
                //////////////

                Child_1.N   = Child_2.N = 1;
                Child_1.Exp = Child_2.Exp = 0;
                Child_1.St  = Child_2.St = 0;
                Child_1.M   = Child_2.M = 0;
                Child_1.S   = Child_2.S = 0;
                //Child_1.Epsilon_0 = Child_2.Epsilon_0 = Configuration.Epsilon_0;

                SigmaNormalClassifier SNP1 = ( SigmaNormalClassifier )Parent_1;
                SigmaNormalClassifier SNP2 = ( SigmaNormalClassifier )Parent_2;
                SigmaNormalClassifier SNC1 = ( SigmaNormalClassifier )Child_1;
                SigmaNormalClassifier SNC2 = ( SigmaNormalClassifier )Child_2;

                // 交叉
                if (Configuration.MT.NextDouble() < Configuration.Chai)
                {
                    Child_1.Crossover(Child_2);
                    Child_1.P = (Parent_1.P + Parent_2.P) / 2;
                    //Child_1.Epsilon = Parent_1.Epsilon + Parent_2.Epsilon;
                    Child_1.Epsilon = (Parent_1.Epsilon + Parent_2.Epsilon) / 2;
                    Child_1.F       = (Parent_1.F + Parent_2.F) / 2;

                    Child_1.Epsilon_0 = (Parent_1.Epsilon_0 + Parent_2.Epsilon_0) / 2;
                    //Child_1.Epsilon_0 = Math.Min(Parent_1.Epsilon_0, Parent_2.Epsilon_0);
                    Child_2.P       = Child_1.P;
                    Child_2.Epsilon = Child_1.Epsilon;
                    Child_2.F       = Child_1.F;

                    Child_2.Epsilon_0 = Child_1.Epsilon_0;

                    for (int i = 0; i < SNC1.WinningRate.Count(); i++)
                    {
                        SNC1.WinningRate[i] = SNC2.WinningRate[i] = (SNP1.WinningRate[i] + SNP2.WinningRate[i]) / 2;
                    }
                }

                Child_1.F *= 0.1;
                Child_2.F *= 0.1;

                for (int i = 0; i < SNC1.WinningRate.Count(); i++)
                {
                    SNC1.WinningRate[i] *= 0.1;
                    SNC2.WinningRate[i] *= 0.1;
                }

                // bothChild
                Child_1.Mutation(Situation);
                Child_2.Mutation(Situation);
                if (Child_1.C.state[4] == '0' & Child_1.C.state[7] == '1')//"bath0 rehabi1"
                {
                    Configuration.Problem.WriteLine(Child_1.C.state + "," + Configuration.T + "," + Child_1.P + "," + Child_1.M + "," + Child_1.Epsilon + "," + Child_1.F + ","
                                                    + Child_1.N + "," + Child_1.Exp + "," + Child_1.Ts + "," + Child_1.As + "," + Child_1.Kappa + "," + Child_1.Epsilon_0 + "," + Child_1.St + "," + Child_1.GenerateTime + ", child 2 ");
                    Configuration.Problem.WriteLine(Parent_1.C.state + "," + Configuration.T + "," + Parent_1.P + "," + Parent_1.M + "," + Parent_1.Epsilon + "," + Parent_1.F + ","
                                                    + Parent_1.N + "," + Parent_1.Exp + "," + Parent_1.Ts + "," + Parent_1.As + "," + Parent_1.Kappa + "," + Parent_1.Epsilon_0 + "," + Parent_1.St + "," + Parent_1.GenerateTime + ",Parent1");

                    Configuration.Problem.WriteLine(Parent_2.C.state + "," + Configuration.T + "," + Parent_2.P + "," + Parent_2.M + "," + Parent_2.Epsilon + "," + Parent_2.F + ","
                                                    + Parent_2.N + "," + Parent_2.Exp + "," + Parent_2.Ts + "," + Parent_2.As + "," + Parent_2.Kappa + "," + Parent_2.Epsilon_0 + "," + Parent_2.St + "," + Parent_2.GenerateTime + ",Parent2");
                }

                if (Child_2.C.state[4] == '0' & Child_2.C.state[7] == '1')//"bath0 rehabi1"
                {
                    Configuration.Problem.WriteLine(Child_2.C.state + "," + Configuration.T + "," + Child_2.P + "," + Child_2.M + "," + Child_2.Epsilon + "," + Child_2.F + ","
                                                    + Child_2.N + "," + Child_2.Exp + "," + Child_2.Ts + "," + Child_2.As + "," + Child_2.Kappa + "," + Child_2.Epsilon_0 + "," + Child_2.St + "," + Child_2.GenerateTime + ",child 2");
                    Configuration.Problem.WriteLine(Parent_1.C.state + "," + Configuration.T + "," + Parent_1.P + "," + Parent_1.M + "," + Parent_1.Epsilon + "," + Parent_1.F + ","
                                                    + Parent_1.N + "," + Parent_1.Exp + "," + Parent_1.Ts + "," + Parent_1.As + "," + Parent_1.Kappa + "," + Parent_1.Epsilon_0 + "," + Parent_1.St + "," + Parent_1.GenerateTime + ",Parent1");

                    Configuration.Problem.WriteLine(Parent_2.C.state + "," + Configuration.T + "," + Parent_2.P + "," + Parent_2.M + "," + Parent_2.Epsilon + "," + Parent_2.F + ","
                                                    + Parent_2.N + "," + Parent_2.Exp + "," + Parent_2.Ts + "," + Parent_2.As + "," + Parent_2.Kappa + "," + Parent_2.Epsilon_0 + "," + Parent_2.St + "," + Parent_2.GenerateTime + ",Parent2");
                }
                if (Configuration.DoGASubsumption)
                {
                    if (Parent_1.DoesSubsume(Child_1))
                    {
                        Parent_1.N++;
                    }
                    else if (Parent_2.DoesSubsume(Child_1))
                    {
                        Parent_2.N++;
                    }
                    else
                    {
                        P.Insert(Child_1);
                    }
                    P.Delete();

                    if (Parent_1.DoesSubsume(Child_2))
                    {
                        Parent_1.N++;
                    }
                    else if (Parent_2.DoesSubsume(Child_2))
                    {
                        Parent_2.N++;
                    }
                    else
                    {
                        P.Insert(Child_2);
                    }
                    P.Delete();
                }
                else
                {
                    P.Insert(Child_1);
                    P.Delete();
                    P.Insert(Child_2);
                    P.Delete();
                }
            }
        }
Esempio n. 10
0
        // 包摂
        protected override void Subsumption(Population Pop)
        {
            List <Classifier> copyActionSet = new List <Classifier>();

            foreach (Classifier classifier in CList)
            {
                copyActionSet.Add(classifier);
            }
            int N = copyActionSet.Count;

            //最大N回実行する
            //for (int i = 0; i < N; i++)
            //{
            #region subsume
            Classifier Cl = null;

            //actionsetなかに最も一般的な分類子をClにする
            foreach (Classifier C in copyActionSet)
            {
                if (C.CouldSubsume())
                {
                    if ((Cl == null) || (C.C.NumberOfSharp > Cl.C.NumberOfSharp) || ((C.C.NumberOfSharp == Cl.C.NumberOfSharp) && (Configuration.MT.NextDouble() < 0.5)))
                    {
                        Cl = C;
                    }
                }
            }

            if (Cl != null)
            {
                // 削除中にforeachできない

                List <Classifier> CL = new List <Classifier>();

                // 包摂された、削除したいClassifier C をCLに登録
                foreach (Classifier C in copyActionSet)
                {
                    if (Cl.IsMoreGeneral(C))
                    {
                        SigmaNormalClassifier Snc_ko  = (SigmaNormalClassifier)C;
                        SigmaNormalClassifier Snc_oya = (SigmaNormalClassifier)Cl;

                        // e0 の値を3位まで見る、近いものは差がないとみなす
                        var subsumer = Math.Round(Cl.Epsilon_0, 3);
                        var subsumed = Math.Round(C.Epsilon_0, 3);

                        if ((subsumer <= (subsumed + subsumer / 10)) &&
                            Snc_ko.IsConvergenceEpsilon() &&
                            Snc_oya.IsConvergenceEpsilon()
                            )
                        {
                            Cl.N += C.N;

                            CL.Add(C);
                        }
                    }
                }

                foreach (Classifier C in CL)
                {
                    SigmaNormalClassifier SNC = (SigmaNormalClassifier)Cl;


                    if (C.C.state[4] == '0' & C.C.state[7] == '1')    //"bath0 rehabi1"
                    {
                        Configuration.Problem.WriteLine(C.C.state + "," + Configuration.T + "," + C.P + "," + C.M + "," + C.Epsilon + "," + C.F + "," + C.N + "," + C.Exp + "," + C.Ts + "," + C.As + "," + C.Kappa + "," + C.Epsilon_0 + "," + C.St + "," + C.GenerateTime + ", in AS");
                    }

                    this.Remove(C);   //as から削除
                    Pop.Remove(C);    //pop から削除
                }

                //いまの最も一般化されたものを削除する
                //copyActionSet.Remove(Cl);
            }
            #endregion
            //}
        }
Esempio n. 11
0
        protected override void UpdateFitness()
        {
            double AccuracySum = 0;

            foreach (Classifier C in this.CList)
            {
                SigmaNormalClassifier SNC = ( SigmaNormalClassifier )C;



                if (Configuration.T > 1000)
                {
                    if (//またがるのものを排除 平均プラマイ Pのプラマイ

                        (C.M - C.Epsilon) < Configuration.RewardAverage &&
                        (C.M + C.Epsilon) > Configuration.RewardAverage
                        )
                    {//またがる分類子の正確性を極端に下げる PS:0にしてはいけない
                        //またがる部分とEの割合でKappaの正確性を下げていく、またがる部分が大きいければ 下がるのが早い
                        double crossPercentage;
                        double mincross;
                        //puls minus 0.5e どうなるかな0128 ダメだった 余計なもの残した
                        mincross = Math.Min(Math.Abs(C.M + C.Epsilon - Configuration.RewardAverage),
                                            Math.Abs(C.M - C.Epsilon - Configuration.RewardAverage));
                        //crossPercentage = mincross / (C.Epsilon);
                        crossPercentage = mincross / Configuration.RewardAverage;//12/11変更、許容範囲の図り方、平均値と比較

                        //規制緩和 c.epsilon の 20% ぐらいまたがる を許す、緩和しない基本的に+-epsilon 十分緩いい
                        //±σ 相当 片側85% と 片側15% の関係

                        if (crossPercentage < Configuration.CoverPersentage)//許容範囲で通常のやり方
                        {
                            if (C.Epsilon < C.Epsilon_0)
                            {
                                C.Kappa = 1;
                            }
                            else
                            {//epsilon>epsilon0 の場合 
                                C.Kappa = Configuration.Alpha * Math.Pow(C.Epsilon / C.Epsilon_0, -Configuration.Nyu);
                            }
                        }
                        else//許容範囲を超えた
                        {
                            C.Kappa = Configuration.Alpha * Math.Pow(1 + crossPercentage, -Configuration.Nyu);
                            // C.Kappa = Math.Pow(Math.E,-Math.Pow(5*crossPercentage,2));
                        }


                        AccuracySum += C.Kappa * C.N;
                        if (double.IsNaN(AccuracySum))
                        {
                            Console.ReadLine();
                        }
                    }
                    else //またがらない分類子は 通常のやり方
                    {
                        if (C.Epsilon <= C.Epsilon_0)
                        {
                            C.Kappa = 1;
                        }
                        else
                        {//epsilon>epsilon0 の場合 
                            C.Kappa = Configuration.Alpha * Math.Pow(C.Epsilon / C.Epsilon_0, -Configuration.Nyu);
                        }
                        AccuracySum += C.Kappa * C.N;
                        //Accuracy はNaNなるとき 止める
                        if (double.IsNaN(AccuracySum))
                        {
                            Console.ReadLine();
                        }
                    }
                }

                else //1000 回以下の場合
                {
                    if (C.Epsilon <= C.Epsilon_0)
                    {
                        C.Kappa = 1;
                    }
                    else
                    {
                        //ここC.Epsilon_0 == 0, kappa の計算がおかしいから, SNC.epsilon_0 下駄を足す
                        C.Kappa = Configuration.Alpha * Math.Pow(C.Epsilon / SNC.Epsilon_0, -Configuration.Nyu);
                    }
                    if (double.IsNaN(C.Kappa))
                    {
                        Console.WriteLine("kappa =NaN");
                        Console.ReadLine();
                    }
                    AccuracySum += C.Kappa * C.N;
                }
            }
            //
            foreach (Classifier C in this.CList)
            {
                C.F += Configuration.Beta * (C.Kappa * C.N / AccuracySum - C.F);

                if (double.IsNaN(C.F))
                {
                    Console.ReadLine();
                }
            }
        }
        // Populationからfitnessが一番小さいものを削除
        public override void Delete()
        {
            //if( this.CountNumerosity() <= Configuration.N )
            //{
            //	return;
            //}

            //int SumNumerosity = 0;
            //double SumFitness = 0.0;

            //List<Classifier> DeleteCandidate = new List<Classifier>();
            //if(Configuration.ASName == "CS")
            //{
            //	foreach(Classifier C in this.CList)
            //	{
            //		SigmaNormalClassifier SC = ( SigmaNormalClassifier )C;

            //		double WR = 0;
            //		foreach(double d in SC.WinningRate)
            //		{
            //			WR += d;
            //		}

            //		if(SC.HasMatured() && (WR < 0.4 * SC.WinningRate.Count()))
            //		{
            //			DeleteCandidate.Add( SC );
            //		}
            //	}

            //	if(DeleteCandidate.Count == 0)
            //	{
            //		DeleteCandidate = this.CList;
            //	}
            //	//else
            //	//{
            //	//	bool Flag = true;
            //	//	foreach( Classifier C in DeleteCandidate )
            //	//	{
            //	//		SigmaNormalClassifier SNC = ( SigmaNormalClassifier )C;
            //	//		double WR = 0;
            //	//		foreach(double d in SNC.WiningRate)
            //	//		{
            //	//			WR += d;
            //	//		}

            //	//		// 悪い子探し
            //	//		if( WR < 0.4 * SNC.WiningRate.Count() )
            //	//		{
            //	//			Flag = false;
            //	//		}
            //	//	}
            //	//	// 悪い子が一人もいなかったら
            //	//	if( Flag )
            //	//	{
            //	//		DeleteCandidate = this.CList;
            //	//	}

            //	//}
            //}
            //else
            //{
            //	DeleteCandidate = this.CList;
            //}

            //foreach( Classifier C in DeleteCandidate )
            //{
            //	SumNumerosity += C.N;
            //	SumFitness += C.F;
            //}

            //double AvFitness = SumFitness / SumNumerosity;
            //double VoteSum = 0;

            //foreach( Classifier C in DeleteCandidate )
            //{
            //	VoteSum += this.DeletionVote( C, AvFitness );
            //}

            //double ChoicePoint = Configuration.MT.NextDouble() * VoteSum;
            //VoteSum = 0;

            //foreach( Classifier C in DeleteCandidate )
            //{
            //	VoteSum += this.DeletionVote( C, AvFitness );

            //	if( VoteSum > ChoicePoint )
            //	{
            //		if( C.N > 1 )
            //		{
            //			C.N--;
            //		}
            //		else
            //		{
            //			this.Remove( C );
            //		}
            //		return;
            //	}
            //}
            int    SumNumerosity = 0;
            double SumFitness    = 0.0;

            foreach (Classifier C in this.CList)
            {
                SigmaNormalClassifier SNC = ( SigmaNormalClassifier )C;
                SumNumerosity += SNC.N;
                //SumFitness += C.F;
                SumFitness += SNC.WinningRate.Average();
                //Console.WriteLine(SNC.C.state + " ave: " + SNC.WinningRate.Average());
            }
            if (SumNumerosity <= Configuration.N)
            {
                return;
            }
            double AvFitness = SumFitness / SumNumerosity;
            double VoteSum   = 0;

            foreach (Classifier C in this.CList)
            {
                VoteSum += this.DeletionVote(C, AvFitness);
            }

            double ChoicePoint = Configuration.MT.NextDouble() * VoteSum;

            VoteSum = 0;

            foreach (Classifier C in this.CList)
            {
                VoteSum += this.DeletionVote(C, AvFitness);

                if (VoteSum > ChoicePoint)
                {
                    if (C.N > 1)
                    {
                        C.N--;
                    }
                    else
                    {
                        this.Remove(C);
                    }
                    return;
                }
            }
        }
Esempio n. 13
0
        // situationに合うものをPopulationから取り、足りないときはCovering
        protected override void Covering(State S, Population P)
        {
            while (this.CList.Count == 0)
            {
                // situationにあうものをPopulationから探す
                this.CList = P.MatchSituation(S);

                if (CList.Count == 0)
                {
                    // 一部を変化させたCondition
                    State state = new IntegralState(S);
                    state.Covering();

                    Classifier CC;

                    if (Configuration.ASName == "CS" || Configuration.ASName == "MaxCS" || Configuration.ASName == "Max" || Configuration.ASName == "Updatee0CS")
                    {
                        CC = new SigmaNormalClassifier(state, Configuration.ExpThreshold);
                    }
                    else
                    {
                        CC = new NormalClassifier(state);
                    }

                    P.Add(CC);
                    // 整理
                    P.Delete();
                    this.CList = new List <Classifier>();
                }
            }

            /*while( this.CList.Count == 0 )
             *  {
             *          // situationにあうものをPopulationから探す
             *          this.CList = P.MatchSituation( S );
             *
             *          // Actionの種類
             *          List<char> Actions = new List<char>();
             *          int NumberOfActions = 0;
             *
             *          // Multiplexer(2進数)
             *          if( Configuration.Type == "Binary" )
             *          {
             *                  Actions.Add( '0' );
             *                  Actions.Add( '1' );
             *                  foreach( Classifier C in this.CList )
             *                  {
             *                          Actions.Remove( C.A );
             *                  }
             *                  NumberOfActions = 2 - Actions.Count;
             *          }
             *
             *          // MatchSetにある行動が少ないとき
             *          if( NumberOfActions < Configuration.Theta_mna )
             *          {
             *                  // 一部を変化させたCondition
             *                  State state = new BinaryState( S );
             *                  state.Covering();
             *
             *                  Classifier CC;
             *                  if( Configuration.ASName == "CS" || Configuration.ASName == "MaxCS" || Configuration.ASName == "Max" || Configuration.ASName == "Updatee0CS" )
             *                  {
             *                          CC = new SigmaNormalClassifier( state, Actions, Configuration.ExpThreshold );
             *                  }
             *                  else
             *                  {
             *                          CC = new NormalClassifier( state, Actions );
             *                  }
             *                  P.Add( CC );
             *                  // 整理
             *                  P.Delete();
             *                  this.CList = new List<Classifier>();
             *          }
             *  }*/
        }
Esempio n. 14
0
        public static void Experiment(Environment Env, Population P)
        {
            // 変数初期化
            Configuration.T = 0;
            ActionSet PreviousAS  = null;
            double    PreviousRho = 0;
            State     PreviousS   = null;

            // stdlist収束
            bool ConvergenceStelist = false;

            // 移動平均計算用
            double[] RhoArray = new double[Configuration.Iteration];
            int[]    Num      = new int[Configuration.Iteration];
            //double[] Std = new double[Configuration.Iteration];

            Configuration.ZeroList = new List <double>();
            Configuration.OneList  = new List <double>();

            List <string> DataList         = Env.GetDataList();
            List <string> DistinctDataList = DataList.Distinct().ToList();

            int DistinctDataNum = DistinctDataList.Count();

            // 提案手法 入力データ個数分の分散
            Configuration.Stdlist = new StdList[DistinctDataNum];
            // 収束した VTの値を保存する  ちょう
            Configuration.ConvergentedVT = new StdList[DistinctDataNum];

            for (int i = 0; i < DistinctDataNum; i++)
            {
                Configuration.ConvergentedVT[i] = new StdList(DistinctDataList[i], '0');
                //Configuration.ConvergentedVT[i * 4 + 1] = new StdList(i, '1');
            }
            for (int i = 0; i < DistinctDataNum; i++)
            {
                Configuration.Stdlist[i] = new StdList(DistinctDataList[i], '0');
                //Configuration.Stdlist[i * 4 + 1] = new StdList( i, '1' );
            }

            // 実験1a ノイズを既知のものとして扱う
            if (Configuration.ASName == "WellKnown")
            {
                Configuration.Epsilon_0 += Configuration.NoiseWidth;
            }

            Configuration.Problem.WriteLine("state ,iter,P , cl.M ,cl.Epsilon , cl.F , cl.N , cl.Exp , cl.Ts ,cl.As , cl.Kappa ,cl.Epsilon_0 , cl.St , cl.GenerateTime");
            StreamWriter goodsleep1 = new StreamWriter("./goodsleep_rule1.csv");

            goodsleep1.WriteLine("state ,iter,P , cl.M ,cl.Epsilon , cl.F , cl.N , cl.Exp , cl.Ts ,cl.As , cl.Kappa ,cl.Epsilon_0 , cl.St , cl.GenerateTime");

            StreamWriter goodsleep2 = new StreamWriter("./goodsleep_rule2.csv");

            goodsleep2.WriteLine("state ,iter,P , cl.M ,cl.Epsilon , cl.F , cl.N , cl.Exp , cl.Ts ,cl.As , cl.Kappa ,cl.Epsilon_0 , cl.St , cl.GenerateTime");

            StreamWriter badsleep = new StreamWriter("./badsleep_rule.csv");

            badsleep.WriteLine("state ,iter,P , cl.M ,cl.Epsilon , cl.F , cl.N , cl.Exp , cl.Ts ,cl.As , cl.Kappa ,cl.Epsilon_0 , cl.St , cl.GenerateTime");
            // メインループ
            #region main roop
            while (Configuration.T < Configuration.Iteration)
            {
                // VTの収束
                if (!Configuration.IsConvergenceVT)
                {
                    bool flag = true;
                    //入力データのSLが収束すれば、VTが収束とみなす。
                    foreach (StdList SL in Configuration.Stdlist)
                    {
                        if (flag && !SL.IsConvergenceSigma())
                        {
                            flag = false;
                            break;
                        }
                    }
                    if (flag)   // 初めてTrue
                    {
                        Configuration.IsConvergenceVT = true;
                        //収束したVTを保存する
                        for (int i = 0; i < DistinctDataList.Count; i++)
                        {
                            Configuration.ConvergentedVT[i].M = Configuration.Stdlist[i].M;
                            //Configuration.ConvergentedVT[i * 4+1].M = Configuration.Stdlist[i * 2+1].M;


                            Configuration.ConvergentedVT[i].S = Configuration.Stdlist[i].S;
                            //Configuration.ConvergentedVT[i * 4 + 1].S = Configuration.Stdlist[i*2+1].S;

                            Configuration.ConvergentedVT[i].T = Configuration.Stdlist[i].T;
                            //Configuration.ConvergentedVT[i * 4 + 1].T = Configuration.Stdlist[i * 2 + 1].T;
                        }


                        // [P]の全てを新しい基準で再評価
                        foreach (Classifier C in P.CList)
                        {
                            // 加重平均
                            double ST   = 0;
                            int    SumT = 0;
                            foreach (StdList SL in Configuration.Stdlist)
                            {
                                if (SL.IsIncluded(C.C.state))
                                {
                                    ST   += SL.S * SL.T;
                                    SumT += SL.T;
                                }
                            }
                            ST /= SumT;

                            SigmaNormalClassifier SNC = (SigmaNormalClassifier)C;
                            C.Epsilon_0 = ST + Configuration.Epsilon_0;
                            if (C.Exp > 2)
                            {
                                C.Epsilon = SNC.EpsilonList[0];
                            }
                        }
                    }
                }



                State S = Env.GetState();

                // MatchSet生成
                MatchSet M = new NormalMatchSet(S, P);

                foreach (Classifier cl in M.CList)
                {
                    if (cl.C.state[4] == '2' & cl.C.state[7] == '#')//"bath2  rehabi# or bath# rehabi0"
                    {
                        goodsleep1.WriteLine(cl.C.state + "," + Configuration.T + "," + cl.P + "," + cl.M + "," + cl.Epsilon + "," + cl.F + "," + cl.N + "," + cl.Exp + "," + cl.Ts + "," + cl.As + "," + cl.Kappa + "," + cl.Epsilon_0 + "," + cl.St + "," + cl.GenerateTime);
                    }
                    if (cl.C.state[4] == '#' & cl.C.state[7] == '0')//"bath2  rehabi# or bath# rehabi0"
                    {
                        goodsleep2.WriteLine(cl.C.state + "," + Configuration.T + "," + cl.P + "," + cl.M + "," + cl.Epsilon + "," + cl.F + "," + cl.N + "," + cl.Exp + "," + cl.Ts + "," + cl.As + "," + cl.Kappa + "," + cl.Epsilon_0 + "," + cl.St + "," + cl.GenerateTime);
                    }
                }
                foreach (Classifier cl in P.CList)
                {
                    if (cl.C.state[4] == '0' & cl.C.state[7] == '1')//"bath0 rehabi1"
                    {
                        badsleep.WriteLine(cl.C.state + "," + Configuration.T + "," + cl.P + "," + cl.M + "," + cl.Epsilon + "," + cl.F + "," + cl.N + "," + cl.Exp + "," + cl.Ts + "," + cl.As + "," + cl.Kappa + "," + cl.Epsilon_0 + "," + cl.St + "," + cl.GenerateTime);
                    }
                }

                // ActionSetはただMをコピーするだけ,アクションがないから
                ActionSet AS;
                if (Configuration.ASName == "CS")
                {
                    AS = new ConditionSigmaActionSet(M.CList);
                }
                else
                {
                    AS = new NormalActionSet(M.CList); /*M.MatchAction(Action))*/;
                }


                char   Action = '0';//action ないから、全部0にする
                double Rho    = Env.ExecuteAction(Action);



                StdList Sigma = null;

                // 提案手法 分散の計算
                foreach (StdList SL in Configuration.Stdlist)
                {
                    if ((SL.C == S.state) /*&& ( SL.A == Action )*/)
                    {
                        // situationの分散取得
                        SL.Update(Rho);
                        Sigma = SL;
                    }
                }

                // 提案手法(中田)
                if (Configuration.ASName == "CS")
                {
                    Configuration.URE_Epsilon0 = -1;

                    // 最小値
                    double d = Configuration.Rho;

                    foreach (SigmaNormalClassifier C in AS.CList)
                    {
                        if (d > C.S && C.IsConvergenceEpsilon())
                        {
                            d = Math.Sqrt(C.S / (C.St - 1));
                        }
                    }

                    Configuration.URE_Epsilon0 = d;
                }
                //chou 1000回の報酬平均を保存

                if (Configuration.T < 1000)
                {
                    Configuration.RewardList.Add(Rho);
                }
                if (Configuration.T == 1000)
                {
                    Configuration.RewardAverage = Configuration.RewardList.Mean();
                }

                // マルチステップ問題の終着またはシングルステップ問題
                if (Env.Eop)
                {
                    double p = Rho;
                    AS.Update(P, p, Sigma);
                    AS.RunGA(S, P);                      //komine



                    PreviousAS = null;
                }
                else
                {
                    PreviousAS  = AS;
                    PreviousRho = Rho;
                    PreviousS   = S;
                }



                Num[Configuration.T] = P.CList.Count();
                //Std[Configuration.T] = Math.Sqrt( Stdlist[20].Sigma / (Stdlist[20].T - 1));

                if (Configuration.StartTime < 0 && Configuration.FlagSigma && Configuration.FlagEpsilon)
                {
                    Configuration.StartTime = Configuration.T;
                }
                Configuration.FlagSigma = Configuration.FlagEpsilon = false;



                if (!ConvergenceStelist && (Configuration.ASName == "CS" || Configuration.ASName == "MaxCS" || Configuration.ASName == "Max" || Configuration.ASName == "Updatee0CS"))
                {
                    int i = 1;

                    foreach (StdList SL in Configuration.Stdlist)
                    {
                        i *= (SL.IsConvergenceSigma() ? 1 : 0);
                    }

                    if (i == 1)
                    {
                        StreamWriter stdSw = new StreamWriter("./ConvergenceVT_" + Configuration.T + "_" + Configuration.Seed + "CnoiseWidth" + Configuration.NoiseWidth
                                                              + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma
                                                              + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis"));

                        stdSw.WriteLine("condition,action,sigma,average,time,convergence");
                        foreach (StdList SL in Configuration.Stdlist)
                        {
                            stdSw.WriteLine(SL.C + "," + SL.A + "," + SL.S + "," + SL.M + "," + SL.T + "," + (SL.IsConvergenceSigma() ? 1 : 0));                                // 1 : 収束
                        }
                        stdSw.Close();
                        ConvergenceStelist = true;
                    }
                }



                Configuration.T++;
                Console.WriteLine(Configuration.T);
            }
            P.Show();
            #endregion
            goodsleep1.Close();
            goodsleep2.Close();
            badsleep.Close();

            Configuration.Problem.Close();
            P.Compact();
            //P.Show();

            if ((Configuration.ASName == "CS" || Configuration.ASName == "MaxCS" || Configuration.ASName == "Max" || Configuration.ASName == "Updatee0CS"))
            {
                StreamWriter stdSw = new StreamWriter("./VarianceTable_" + Configuration.T + "_" + Configuration.Seed + "CnoiseWidth" + Configuration.NoiseWidth
                                                      + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma
                                                      + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis"));

                stdSw.WriteLine("condition,action,sigma,time,convergence,convergencetime");
                foreach (StdList SL in Configuration.Stdlist)
                {
                    stdSw.WriteLine(SL.C + "," + SL.A + "," + SL.S + "," + SL.T + "," + (SL.IsConvergenceSigma() ? 1 : 0) + "," + SL.ConvergenceTime);                          // 1 : 収束
                }
                stdSw.Close();
            }

            //LD.Close();


            StreamWriter sw = new StreamWriter("./performance_" + Configuration.Seed + "CnoiseWidth_" + Configuration.NoiseWidth
                                               + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma
                                               + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis"));



            sw.WriteLine("Performance,PopulationSize," + Configuration.StartTime);

            for (int i = 0; i < RhoArray.Count() - Configuration.SMA; i++)
            {
                double R = 0;
                double N = 0;
                for (int j = 0; j < Configuration.SMA; j++)
                {
                    R += RhoArray[i + j];
                    N += Num[i + j];
                }
                R /= Configuration.SMA;
                N /= Configuration.SMA;

                sw.WriteLine(R + "," + N);
            }

            sw.Close();



            StreamWriter Zerosw = new StreamWriter("./Zero_per_" + Configuration.Seed + "CnoiseWidth_" + Configuration.NoiseWidth
                                                   + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma
                                                   + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis"));


            Zerosw.WriteLine("Performance,dummy," + Configuration.StartTime);

            for (int i = 0; i < Configuration.ZeroList.Count() - Configuration.SMA; i++)
            {
                double R = 0;
                double N = 0;
                for (int j = 0; j < Configuration.SMA; j++)
                {
                    R += Configuration.ZeroList[i + j];
                    N += Num[i + j];
                }
                R /= Configuration.SMA;
                N /= Configuration.SMA;

                Zerosw.WriteLine(R + "," + N);
            }

            Zerosw.Close();


            StreamWriter Onesw = new StreamWriter("./One_per_" + Configuration.Seed + "CnoiseWidth_" + Configuration.NoiseWidth
                                                  + "AS_" + Configuration.ASName + "ET_" + Configuration.ExpThreshold + "DS_" + Configuration.DifferenceSigma + "LS_" + Configuration.LookBackSigma
                                                  + "DE_" + Configuration.DifferenceEpsilon + "LE_" + Configuration.LookBackEpsilon + ".csv", true, System.Text.Encoding.GetEncoding("shift_jis"));



            Onesw.WriteLine("Performance,dummy," + Configuration.StartTime);

            for (int i = 0; i < Configuration.OneList.Count() - Configuration.SMA; i++)
            {
                double R = 0;
                double N = 0;
                for (int j = 0; j < Configuration.SMA; j++)
                {
                    R += Configuration.OneList[i + j];
                    N += Num[i + j];
                }
                R /= Configuration.SMA;
                N /= Configuration.SMA;

                Onesw.WriteLine(R + "," + N);
            }

            Onesw.Close();

            Configuration.ESW.Close();
            //Configuration.Problem.Close();


            System.IO.Directory.SetCurrentDirectory("../");
            StreamWriter swP = new StreamWriter("PPP.csv", true, System.Text.Encoding.GetEncoding("shift_jis"));

            swP.WriteLine(Configuration.NoiseWidth + "," + Configuration.ASName + "," + P.CList.Count());
            swP.Close();
        }