//***********************************************************************
            // Modulo Exponentiation
            //***********************************************************************

            public BigInteger modPow(BigInteger exp, BigInteger n)
            {
                if ((exp.data[maxLength - 1] & 0x80000000) != 0)
                    throw (new ArithmeticException("Positive exponents only."));

                BigInteger resultNum = 1;
                BigInteger tempNum;
                bool thisNegative = false;

                if ((this.data[maxLength - 1] & 0x80000000) != 0)   // negative this
                {
                    tempNum = -this % n;
                    thisNegative = true;
                }
                else
                    tempNum = this % n;  // ensures (tempNum * tempNum) < b^(2k)

                if ((n.data[maxLength - 1] & 0x80000000) != 0)   // negative n
                    n = -n;

                // calculate constant = b^(2k) / m
                BigInteger constant = new BigInteger();

                int i = n.dataLength << 1;
                constant.data[i] = 0x00000001;
                constant.dataLength = i + 1;

                constant = constant / n;
                int totalBits = exp.bitCount();
                int count = 0;

                // perform squaring and multiply exponentiation
                for (int pos = 0; pos < exp.dataLength; pos++)
                {
                    uint mask = 0x01;
                    //Console.WriteLine("pos = " + pos);

                    for (int index = 0; index < 32; index++)
                    {
                        if ((exp.data[pos] & mask) != 0)
                            resultNum = BarrettReduction(resultNum * tempNum, n, constant);

                        mask <<= 1;

                        tempNum = BarrettReduction(tempNum * tempNum, n, constant);


                        if (tempNum.dataLength == 1 && tempNum.data[0] == 1)
                        {
                            if (thisNegative && (exp.data[0] & 0x1) != 0)    //odd exp
                                return -resultNum;
                            return resultNum;
                        }
                        count++;
                        if (count == totalBits)
                            break;
                    }
                }

                if (thisNegative && (exp.data[0] & 0x1) != 0)    //odd exp
                    return -resultNum;

                return resultNum;
            }
            //***********************************************************************
            // Overloading of unary << operators
            //***********************************************************************

            public static BigInteger operator <<(BigInteger bi1, int shiftVal)
            {
                BigInteger result = new BigInteger(bi1);
                result.dataLength = shiftLeft(result.data, shiftVal);

                return result;
            }
            //***********************************************************************
            // Overloading of the NOT operator (1's complement)
            //***********************************************************************

            public static BigInteger operator ~(BigInteger bi1)
            {
                BigInteger result = new BigInteger(bi1);

                for (int i = 0; i < maxLength; i++)
                    result.data[i] = (uint)(~(bi1.data[i]));

                result.dataLength = maxLength;

                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;

                return result;
            }
            //***********************************************************************
            // Overloading of the unary ++ operator
            //***********************************************************************

            public static BigInteger operator ++(BigInteger bi1)
            {
                BigInteger result = new BigInteger(bi1);

                long val, carry = 1;
                int index = 0;

                while (carry != 0 && index < maxLength)
                {
                    val = (long)(result.data[index]);
                    val++;

                    result.data[index] = (uint)(val & 0xFFFFFFFF);
                    carry = val >> 32;

                    index++;
                }

                if (index > result.dataLength)
                    result.dataLength = index;
                else
                {
                    while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                        result.dataLength--;
                }

                // overflow check
                int lastPos = maxLength - 1;

                // overflow if initial value was +ve but ++ caused a sign
                // change to negative.

                if ((bi1.data[lastPos] & 0x80000000) == 0 &&
                   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
                {
                    throw (new ArithmeticException("Overflow in ++."));
                }
                return result;
            }
            //***********************************************************************
            // Overloading of the unary -- operator
            //***********************************************************************

            public static BigInteger operator --(BigInteger bi1)
            {
                BigInteger result = new BigInteger(bi1);

                long val;
                bool carryIn = true;
                int index = 0;

                while (carryIn && index < maxLength)
                {
                    val = (long)(result.data[index]);
                    val--;

                    result.data[index] = (uint)(val & 0xFFFFFFFF);

                    if (val >= 0)
                        carryIn = false;

                    index++;
                }

                if (index > result.dataLength)
                    result.dataLength = index;

                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;

                // overflow check
                int lastPos = maxLength - 1;

                // overflow if initial value was -ve but -- caused a sign
                // change to positive.

                if ((bi1.data[lastPos] & 0x80000000) != 0 &&
                   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
                {
                    throw (new ArithmeticException("Underflow in --."));
                }

                return result;
            }
            //***********************************************************************
            // Tests the correct implementation of the modulo exponential function
            // using RSA encryption and decryption (using pre-computed encryption and
            // decryption keys).
            //***********************************************************************

            public static void RSATest(int rounds)
            {
                Random rand = new Random(1);
                byte[] val = new byte[64];

                // private and public key
                BigInteger bi_e = new BigInteger("a932b948feed4fb2b692609bd22164fc9edb59fae7880cc1eaff7b3c9626b7e5b241c27a974833b2622ebe09beb451917663d47232488f23a117fc97720f1e7", 16);
                BigInteger bi_d = new BigInteger("4adf2f7a89da93248509347d2ae506d683dd3a16357e859a980c4f77a4e2f7a01fae289f13a851df6e9db5adaa60bfd2b162bbbe31f7c8f828261a6839311929d2cef4f864dde65e556ce43c89bbbf9f1ac5511315847ce9cc8dc92470a747b8792d6a83b0092d2e5ebaf852c85cacf34278efa99160f2f8aa7ee7214de07b7", 16);
                BigInteger bi_n = new BigInteger("e8e77781f36a7b3188d711c2190b560f205a52391b3479cdb99fa010745cbeba5f2adc08e1de6bf38398a0487c4a73610d94ec36f17f3f46ad75e17bc1adfec99839589f45f95ccc94cb2a5c500b477eb3323d8cfab0c8458c96f0147a45d27e45a4d11d54d77684f65d48f15fafcc1ba208e71e921b9bd9017c16a5231af7f", 16);

                Console.WriteLine("e =\n" + bi_e.ToString(10));
                Console.WriteLine("\nd =\n" + bi_d.ToString(10));
                Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

                for (int count = 0; count < rounds; count++)
                {
                    // generate data of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 65);

                    bool done = false;
                    while (!done)
                    {
                        for (int i = 0; i < 64; i++)
                        {
                            if (i < t1)
                                val[i] = (byte)(rand.NextDouble() * 256);
                            else
                                val[i] = 0;

                            if (val[i] != 0)
                                done = true;
                        }
                    }

                    while (val[0] == 0)
                        val[0] = (byte)(rand.NextDouble() * 256);

                    Console.Write("Round = " + count);

                    // encrypt and decrypt data
                    BigInteger bi_data = new BigInteger(val, t1);
                    BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                    BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

                    // compare
                    if (bi_decrypted != bi_data)
                    {
                        Console.WriteLine("\nError at round " + count);
                        Console.WriteLine(bi_data + "\n");
                        return;
                    }
                    Console.WriteLine(" <PASSED>.");
                }

            }
            //***********************************************************************
            // Tests the correct implementation of sqrt() method.
            //***********************************************************************

            public static void SqrtTest(int rounds)
            {
                Random rand = new Random();
                for (int count = 0; count < rounds; count++)
                {
                    // generate data of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 1024);

                    Console.Write("Round = " + count);

                    BigInteger a = new BigInteger();
                    a.genRandomBits(t1, rand);

                    BigInteger b = a.sqrt();
                    BigInteger c = (b + 1) * (b + 1);

                    // check that b is the largest integer such that b*b <= a
                    if (c <= a)
                    {
                        Console.WriteLine("\nError at round " + count);
                        Console.WriteLine(a + "\n");
                        return;
                    }
                    Console.WriteLine(" <PASSED>.");
                }
            }
            private bool LucasStrongTestHelper(BigInteger thisVal)
            {
                // Do the test (selects D based on Selfridge)
                // Let D be the first element of the sequence
                // 5, -7, 9, -11, 13, ... for which J(D,n) = -1
                // Let P = 1, Q = (1-D) / 4

                long D = 5, sign = -1, dCount = 0;
                bool done = false;

                while (!done)
                {
                    int Jresult = BigInteger.Jacobi(D, thisVal);

                    if (Jresult == -1)
                        done = true;    // J(D, this) = 1
                    else
                    {
                        if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
                            return false;

                        if (dCount == 20)
                        {
                            // check for square
                            BigInteger root = thisVal.sqrt();
                            if (root * root == thisVal)
                                return false;
                        }

                        //Console.WriteLine(D);
                        D = (Math.Abs(D) + 2) * sign;
                        sign = -sign;
                    }
                    dCount++;
                }

                long Q = (1 - D) >> 2;

                /*
                Console.WriteLine("D = " + D);
                Console.WriteLine("Q = " + Q);
                Console.WriteLine("(n,D) = " + thisVal.gcd(D));
                Console.WriteLine("(n,Q) = " + thisVal.gcd(Q));
                Console.WriteLine("J(D|n) = " + BigInteger.Jacobi(D, thisVal));
                */

                BigInteger p_add1 = thisVal + 1;
                int s = 0;

                for (int index = 0; index < p_add1.dataLength; index++)
                {
                    uint mask = 0x01;

                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_add1.data[index] & mask) != 0)
                        {
                            index = p_add1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }

                BigInteger t = p_add1 >> s;

                // calculate constant = b^(2k) / m
                // for Barrett Reduction
                BigInteger constant = new BigInteger();

                int nLen = thisVal.dataLength << 1;
                constant.data[nLen] = 0x00000001;
                constant.dataLength = nLen + 1;

                constant = constant / thisVal;

                BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
                bool isPrime = false;

                if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
                   (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                {
                    // u(t) = 0 or V(t) = 0
                    isPrime = true;
                }

                for (int i = 1; i < s; i++)
                {
                    if (!isPrime)
                    {
                        // doubling of index
                        lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
                        lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

                        //lucas[1] = ((lucas[1] * lucas[1]) - (lucas[2] << 1)) % thisVal;

                        if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
                            isPrime = true;
                    }

                    lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
                }


                if (isPrime)     // additional checks for composite numbers
                {
                    // If n is prime and gcd(n, Q) == 1, then
                    // Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

                    BigInteger g = thisVal.gcd(Q);
                    if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
                    {
                        if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
                            lucas[2] += thisVal;

                        BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
                        if ((temp.data[maxLength - 1] & 0x80000000) != 0)
                            temp += thisVal;

                        if (lucas[2] != temp)
                            isPrime = false;
                    }
                }

                return isPrime;
            }
            //***********************************************************************
            // Computes the Jacobi Symbol for a and b.
            // Algorithm adapted from [3] and [4] with some optimizations
            //***********************************************************************

            public static int Jacobi(BigInteger a, BigInteger b)
            {
                // Jacobi defined only for odd integers
                if ((b.data[0] & 0x1) == 0)
                    throw (new ArgumentException("Jacobi defined only for odd integers."));

                if (a >= b) a %= b;
                if (a.dataLength == 1 && a.data[0] == 0) return 0;  // a == 0
                if (a.dataLength == 1 && a.data[0] == 1) return 1;  // a == 1

                if (a < 0)
                {
                    if ((((b - 1).data[0]) & 0x2) == 0)       //if( (((b-1) >> 1).data[0] & 0x1) == 0)
                        return Jacobi(-a, b);
                    else
                        return -Jacobi(-a, b);
                }

                int e = 0;
                for (int index = 0; index < a.dataLength; index++)
                {
                    uint mask = 0x01;

                    for (int i = 0; i < 32; i++)
                    {
                        if ((a.data[index] & mask) != 0)
                        {
                            index = a.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        e++;
                    }
                }

                BigInteger a1 = a >> e;

                int s = 1;
                if ((e & 0x1) != 0 && ((b.data[0] & 0x7) == 3 || (b.data[0] & 0x7) == 5))
                    s = -1;

                if ((b.data[0] & 0x3) == 3 && (a1.data[0] & 0x3) == 3)
                    s = -s;

                if (a1.dataLength == 1 && a1.data[0] == 1)
                    return s;
                else
                    return (s * Jacobi(b % a1, a1));
            }
            //***********************************************************************
            // Probabilistic prime test based on Rabin-Miller's
            //
            // for any p > 0 with p - 1 = 2^s * t
            //
            // p is probably prime (strong pseudoprime) if for any a < p,
            // 1) a^t mod p = 1 or
            // 2) a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
            //
            // Otherwise, p is composite.
            //
            // Returns
            // -------
            // True if "this" is a strong pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            //***********************************************************************

            public bool RabinMillerTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;

                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }

                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;


                // calculate values of s and t
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                int s = 0;

                for (int index = 0; index < p_sub1.dataLength; index++)
                {
                    uint mask = 0x01;

                    for (int i = 0; i < 32; i++)
                    {
                        if ((p_sub1.data[index] & mask) != 0)
                        {
                            index = p_sub1.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }

                BigInteger t = p_sub1 >> s;

                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                Random rand = new Random();

                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;

                    while (!done)       // generate a < n
                    {
                        int testBits = 0;

                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);

                        a.genRandomBits(testBits, rand);

                        int byteLen = a.dataLength;

                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }

                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;

                    BigInteger b = a.modPow(t, thisVal);

                    /*
                    Console.WriteLine("a = " + a.ToString(10));
                    Console.WriteLine("b = " + b.ToString(10));
                    Console.WriteLine("t = " + t.ToString(10));
                    Console.WriteLine("s = " + s);
                    */

                    bool result = false;

                    if (b.dataLength == 1 && b.data[0] == 1)         // a^t mod p = 1
                        result = true;

                    for (int j = 0; result == false && j < s; j++)
                    {
                        if (b == p_sub1)         // a^((2^j)*t) mod p = p-1 for some 0 <= j <= s-1
                        {
                            result = true;
                            break;
                        }

                        b = (b * b) % thisVal;
                    }

                    if (result == false)
                        return false;
                }
                return true;
            }
            //***********************************************************************
            // Probabilistic prime test based on Solovay-Strassen (Euler Criterion)
            //
            // p is probably prime if for any a < p (a is not multiple of p),
            // a^((p-1)/2) mod p = J(a, p)
            //
            // where J is the Jacobi symbol.
            //
            // Otherwise, p is composite.
            //
            // Returns
            // -------
            // True if "this" is a Euler pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            //***********************************************************************

            public bool SolovayStrassenTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;

                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }

                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;


                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                BigInteger p_sub1 = thisVal - 1;
                BigInteger p_sub1_shift = p_sub1 >> 1;

                Random rand = new Random();

                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;

                    while (!done)       // generate a < n
                    {
                        int testBits = 0;

                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);

                        a.genRandomBits(testBits, rand);

                        int byteLen = a.dataLength;

                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }

                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;

                    // calculate a^((p-1)/2) mod p

                    BigInteger expResult = a.modPow(p_sub1_shift, thisVal);
                    if (expResult == p_sub1)
                        expResult = -1;

                    // calculate Jacobi symbol
                    BigInteger jacob = Jacobi(a, thisVal);

                    //Console.WriteLine("a = " + a.ToString(10) + " b = " + thisVal.ToString(10));
                    //Console.WriteLine("expResult = " + expResult.ToString(10) + " Jacob = " + jacob.ToString(10));

                    // if they are different then it is not prime
                    if (expResult != jacob)
                        return false;
                }

                return true;
            }
            //***********************************************************************
            // Probabilistic prime test based on Fermat's little theorem
            //
            // for any a < p (p does not divide a) if
            //      a^(p-1) mod p != 1 then p is not prime.
            //
            // Otherwise, p is probably prime (pseudoprime to the chosen base).
            //
            // Returns
            // -------
            // True if "this" is a pseudoprime to randomly chosen
            // bases.  The number of chosen bases is given by the "confidence"
            // parameter.
            //
            // False if "this" is definitely NOT prime.
            //
            // Note - this method is fast but fails for Carmichael numbers except
            // when the randomly chosen base is a factor of the number.
            //
            //***********************************************************************

            public bool FermatLittleTest(int confidence)
            {
                BigInteger thisVal;
                if ((this.data[maxLength - 1] & 0x80000000) != 0)        // negative
                    thisVal = -this;
                else
                    thisVal = this;

                if (thisVal.dataLength == 1)
                {
                    // test small numbers
                    if (thisVal.data[0] == 0 || thisVal.data[0] == 1)
                        return false;
                    else if (thisVal.data[0] == 2 || thisVal.data[0] == 3)
                        return true;
                }

                if ((thisVal.data[0] & 0x1) == 0)     // even numbers
                    return false;

                int bits = thisVal.bitCount();
                BigInteger a = new BigInteger();
                BigInteger p_sub1 = thisVal - (new BigInteger(1));
                Random rand = new Random();

                for (int round = 0; round < confidence; round++)
                {
                    bool done = false;

                    while (!done)       // generate a < n
                    {
                        int testBits = 0;

                        // make sure "a" has at least 2 bits
                        while (testBits < 2)
                            testBits = (int)(rand.NextDouble() * bits);

                        a.genRandomBits(testBits, rand);

                        int byteLen = a.dataLength;

                        // make sure "a" is not 0
                        if (byteLen > 1 || (byteLen == 1 && a.data[0] != 1))
                            done = true;
                    }

                    // check whether a factor exists (fix for version 1.03)
                    BigInteger gcdTest = a.gcd(thisVal);
                    if (gcdTest.dataLength == 1 && gcdTest.data[0] != 1)
                        return false;

                    // calculate a^(p-1) mod p
                    BigInteger expResult = a.modPow(p_sub1, thisVal);

                    int resultLen = expResult.dataLength;

                    // is NOT prime is a^(p-1) mod p != 1

                    if (resultLen > 1 || (resultLen == 1 && expResult.data[0] != 1))
                    {
                        //Console.WriteLine("a = " + a.ToString());
                        return false;
                    }
                }

                return true;
            }
            //***********************************************************************
            // Returns gcd(this, bi)
            //***********************************************************************

            public BigInteger gcd(BigInteger bi)
            {
                BigInteger x;
                BigInteger y;

                if ((data[maxLength - 1] & 0x80000000) != 0)     // negative
                    x = -this;
                else
                    x = this;

                if ((bi.data[maxLength - 1] & 0x80000000) != 0)     // negative
                    y = -bi;
                else
                    y = bi;

                BigInteger g = y;

                while (x.dataLength > 1 || (x.dataLength == 1 && x.data[0] != 0))
                {
                    g = x;
                    x = y % x;
                    y = g;
                }

                return g;
            }
            //***********************************************************************
            // Fast calculation of modular reduction using Barrett's reduction.
            // Requires x < b^(2k), where b is the base.  In this case, base is
            // 2^32 (uint).
            //
            // Reference [4]
            //***********************************************************************

            private BigInteger BarrettReduction(BigInteger x, BigInteger n, BigInteger constant)
            {
                int k = n.dataLength,
                    kPlusOne = k + 1,
                    kMinusOne = k - 1;

                BigInteger q1 = new BigInteger();

                // q1 = x / b^(k-1)
                for (int i = kMinusOne, j = 0; i < x.dataLength; i++, j++)
                    q1.data[j] = x.data[i];
                q1.dataLength = x.dataLength - kMinusOne;
                if (q1.dataLength <= 0)
                    q1.dataLength = 1;


                BigInteger q2 = q1 * constant;
                BigInteger q3 = new BigInteger();

                // q3 = q2 / b^(k+1)
                for (int i = kPlusOne, j = 0; i < q2.dataLength; i++, j++)
                    q3.data[j] = q2.data[i];
                q3.dataLength = q2.dataLength - kPlusOne;
                if (q3.dataLength <= 0)
                    q3.dataLength = 1;


                // r1 = x mod b^(k+1)
                // i.e. keep the lowest (k+1) words
                BigInteger r1 = new BigInteger();
                int lengthToCopy = (x.dataLength > kPlusOne) ? kPlusOne : x.dataLength;
                for (int i = 0; i < lengthToCopy; i++)
                    r1.data[i] = x.data[i];
                r1.dataLength = lengthToCopy;


                // r2 = (q3 * n) mod b^(k+1)
                // partial multiplication of q3 and n

                BigInteger r2 = new BigInteger();
                for (int i = 0; i < q3.dataLength; i++)
                {
                    if (q3.data[i] == 0) continue;

                    ulong mcarry = 0;
                    int t = i;
                    for (int j = 0; j < n.dataLength && t < kPlusOne; j++, t++)
                    {
                        // t = i + j
                        ulong val = ((ulong)q3.data[i] * (ulong)n.data[j]) +
                                     (ulong)r2.data[t] + mcarry;

                        r2.data[t] = (uint)(val & 0xFFFFFFFF);
                        mcarry = (val >> 32);
                    }

                    if (t < kPlusOne)
                        r2.data[t] = (uint)mcarry;
                }
                r2.dataLength = kPlusOne;
                while (r2.dataLength > 1 && r2.data[r2.dataLength - 1] == 0)
                    r2.dataLength--;

                r1 -= r2;
                if ((r1.data[maxLength - 1] & 0x80000000) != 0)        // negative
                {
                    BigInteger val = new BigInteger();
                    val.data[kPlusOne] = 0x00000001;
                    val.dataLength = kPlusOne + 1;
                    r1 += val;
                }

                while (r1 >= n)
                    r1 -= n;

                return r1;
            }
            //***********************************************************************
            // Constructor (Default value provided by a string of digits of the
            //              specified base)
            //
            // Example (base 10)
            // -----------------
            // To initialize "a" with the default value of 1234 in base 10
            //      BigInteger a = new BigInteger("1234", 10)
            //
            // To initialize "a" with the default value of -1234
            //      BigInteger a = new BigInteger("-1234", 10)
            //
            // Example (base 16)
            // -----------------
            // To initialize "a" with the default value of 0x1D4F in base 16
            //      BigInteger a = new BigInteger("1D4F", 16)
            //
            // To initialize "a" with the default value of -0x1D4F
            //      BigInteger a = new BigInteger("-1D4F", 16)
            //
            // Note that string values are specified in the <sign><magnitude>
            // format.
            //
            //***********************************************************************

            public BigInteger(string value, int radix)
            {
                BigInteger multiplier = new BigInteger(1);
                BigInteger result = new BigInteger();
                value = (value.ToUpper()).Trim();
                int limit = 0;

                if (value[0] == '-')
                    limit = 1;

                for (int i = value.Length - 1; i >= limit; i--)
                {
                    int posVal = (int)value[i];

                    if (posVal >= '0' && posVal <= '9')
                        posVal -= '0';
                    else if (posVal >= 'A' && posVal <= 'Z')
                        posVal = (posVal - 'A') + 10;
                    else
                        posVal = 9999999;       // arbitrary large


                    if (posVal >= radix)
                        throw (new ArithmeticException("Invalid string in constructor."));
                    else
                    {
                        if (value[0] == '-')
                            posVal = -posVal;

                        result = result + (multiplier * posVal);

                        if ((i - 1) >= limit)
                            multiplier = multiplier * radix;
                    }
                }

                if (value[0] == '-')     // negative values
                {
                    if ((result.data[maxLength - 1] & 0x80000000) == 0)
                        throw (new ArithmeticException("Negative underflow in constructor."));
                }
                else    // positive values
                {
                    if ((result.data[maxLength - 1] & 0x80000000) != 0)
                        throw (new ArithmeticException("Positive overflow in constructor."));
                }

                data = new uint[maxLength];
                for (int i = 0; i < result.dataLength; i++)
                    data[i] = result.data[i];

                dataLength = result.dataLength;
            }
            //***********************************************************************
            // Constructor (Default value provided by BigInteger)
            //***********************************************************************

            public BigInteger(BigInteger bi)
            {
                data = new uint[maxLength];

                dataLength = bi.dataLength;

                for (int i = 0; i < dataLength; i++)
                    data[i] = bi.data[i];
            }
            //***********************************************************************
            // Tests the correct implementation of the /, %, * and + operators
            //***********************************************************************

            public static void MulDivTest(int rounds)
            {
                Random rand = new Random();
                byte[] val = new byte[64];
                byte[] val2 = new byte[64];

                for (int count = 0; count < rounds; count++)
                {
                    // generate 2 numbers of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 65);

                    int t2 = 0;
                    while (t2 == 0)
                        t2 = (int)(rand.NextDouble() * 65);

                    bool done = false;
                    while (!done)
                    {
                        for (int i = 0; i < 64; i++)
                        {
                            if (i < t1)
                                val[i] = (byte)(rand.NextDouble() * 256);
                            else
                                val[i] = 0;

                            if (val[i] != 0)
                                done = true;
                        }
                    }

                    done = false;
                    while (!done)
                    {
                        for (int i = 0; i < 64; i++)
                        {
                            if (i < t2)
                                val2[i] = (byte)(rand.NextDouble() * 256);
                            else
                                val2[i] = 0;

                            if (val2[i] != 0)
                                done = true;
                        }
                    }

                    while (val[0] == 0)
                        val[0] = (byte)(rand.NextDouble() * 256);
                    while (val2[0] == 0)
                        val2[0] = (byte)(rand.NextDouble() * 256);

                    Console.WriteLine(count);
                    BigInteger bn1 = new BigInteger(val, t1);
                    BigInteger bn2 = new BigInteger(val2, t2);


                    // Determine the quotient and remainder by dividing
                    // the first number by the second.

                    BigInteger bn3 = bn1 / bn2;
                    BigInteger bn4 = bn1 % bn2;

                    // Recalculate the number
                    BigInteger bn5 = (bn3 * bn2) + bn4;

                    // Make sure they're the same
                    if (bn5 != bn1)
                    {
                        Console.WriteLine("Error at " + count);
                        Console.WriteLine(bn1 + "\n");
                        Console.WriteLine(bn2 + "\n");
                        Console.WriteLine(bn3 + "\n");
                        Console.WriteLine(bn4 + "\n");
                        Console.WriteLine(bn5 + "\n");
                        return;
                    }
                }
            }
            //***********************************************************************
            // Generates a positive BigInteger that is probably prime.
            //***********************************************************************

            public static BigInteger genPseudoPrime(int bits, int confidence, Random rand)
            {
                BigInteger result = new BigInteger();
                bool done = false;

                while (!done)
                {
                    result.genRandomBits(bits, rand);
                    result.data[0] |= 0x01;     // make it odd

                    // prime test
                    done = result.isProbablePrime(confidence);
                }
                return result;
            }
            //***********************************************************************
            // Tests the correct implementation of the modulo exponential and
            // inverse modulo functions using RSA encryption and decryption.  The two
            // pseudoprimes p and q are fixed, but the two RSA keys are generated
            // for each round of testing.
            //***********************************************************************

            public static void RSATest2(int rounds)
            {
                Random rand = new Random();
                byte[] val = new byte[64];

                byte[] pseudoPrime1 = {
                        (byte)0x85, (byte)0x84, (byte)0x64, (byte)0xFD, (byte)0x70, (byte)0x6A,
                        (byte)0x9F, (byte)0xF0, (byte)0x94, (byte)0x0C, (byte)0x3E, (byte)0x2C,
                        (byte)0x74, (byte)0x34, (byte)0x05, (byte)0xC9, (byte)0x55, (byte)0xB3,
                        (byte)0x85, (byte)0x32, (byte)0x98, (byte)0x71, (byte)0xF9, (byte)0x41,
                        (byte)0x21, (byte)0x5F, (byte)0x02, (byte)0x9E, (byte)0xEA, (byte)0x56,
                        (byte)0x8D, (byte)0x8C, (byte)0x44, (byte)0xCC, (byte)0xEE, (byte)0xEE,
                        (byte)0x3D, (byte)0x2C, (byte)0x9D, (byte)0x2C, (byte)0x12, (byte)0x41,
                        (byte)0x1E, (byte)0xF1, (byte)0xC5, (byte)0x32, (byte)0xC3, (byte)0xAA,
                        (byte)0x31, (byte)0x4A, (byte)0x52, (byte)0xD8, (byte)0xE8, (byte)0xAF,
                        (byte)0x42, (byte)0xF4, (byte)0x72, (byte)0xA1, (byte)0x2A, (byte)0x0D,
                        (byte)0x97, (byte)0xB1, (byte)0x31, (byte)0xB3,
                };

                byte[] pseudoPrime2 = {
                        (byte)0x99, (byte)0x98, (byte)0xCA, (byte)0xB8, (byte)0x5E, (byte)0xD7,
                        (byte)0xE5, (byte)0xDC, (byte)0x28, (byte)0x5C, (byte)0x6F, (byte)0x0E,
                        (byte)0x15, (byte)0x09, (byte)0x59, (byte)0x6E, (byte)0x84, (byte)0xF3,
                        (byte)0x81, (byte)0xCD, (byte)0xDE, (byte)0x42, (byte)0xDC, (byte)0x93,
                        (byte)0xC2, (byte)0x7A, (byte)0x62, (byte)0xAC, (byte)0x6C, (byte)0xAF,
                        (byte)0xDE, (byte)0x74, (byte)0xE3, (byte)0xCB, (byte)0x60, (byte)0x20,
                        (byte)0x38, (byte)0x9C, (byte)0x21, (byte)0xC3, (byte)0xDC, (byte)0xC8,
                        (byte)0xA2, (byte)0x4D, (byte)0xC6, (byte)0x2A, (byte)0x35, (byte)0x7F,
                        (byte)0xF3, (byte)0xA9, (byte)0xE8, (byte)0x1D, (byte)0x7B, (byte)0x2C,
                        (byte)0x78, (byte)0xFA, (byte)0xB8, (byte)0x02, (byte)0x55, (byte)0x80,
                        (byte)0x9B, (byte)0xC2, (byte)0xA5, (byte)0xCB,
                };


                BigInteger bi_p = new BigInteger(pseudoPrime1);
                BigInteger bi_q = new BigInteger(pseudoPrime2);
                BigInteger bi_pq = (bi_p - 1) * (bi_q - 1);
                BigInteger bi_n = bi_p * bi_q;

                for (int count = 0; count < rounds; count++)
                {
                    // generate private and public key
                    BigInteger bi_e = bi_pq.genCoPrime(512, rand);
                    BigInteger bi_d = bi_e.modInverse(bi_pq);

                    Console.WriteLine("\ne =\n" + bi_e.ToString(10));
                    Console.WriteLine("\nd =\n" + bi_d.ToString(10));
                    Console.WriteLine("\nn =\n" + bi_n.ToString(10) + "\n");

                    // generate data of random length
                    int t1 = 0;
                    while (t1 == 0)
                        t1 = (int)(rand.NextDouble() * 65);

                    bool done = false;
                    while (!done)
                    {
                        for (int i = 0; i < 64; i++)
                        {
                            if (i < t1)
                                val[i] = (byte)(rand.NextDouble() * 256);
                            else
                                val[i] = 0;

                            if (val[i] != 0)
                                done = true;
                        }
                    }

                    while (val[0] == 0)
                        val[0] = (byte)(rand.NextDouble() * 256);

                    Console.Write("Round = " + count);

                    // encrypt and decrypt data
                    BigInteger bi_data = new BigInteger(val, t1);
                    BigInteger bi_encrypted = bi_data.modPow(bi_e, bi_n);
                    BigInteger bi_decrypted = bi_encrypted.modPow(bi_d, bi_n);

                    // compare
                    if (bi_decrypted != bi_data)
                    {
                        Console.WriteLine("\nError at round " + count);
                        Console.WriteLine(bi_data + "\n");
                        return;
                    }
                    Console.WriteLine(" <PASSED>.");
                }

            }
            //***********************************************************************
            // Generates a random number with the specified number of bits such
            // that gcd(number, this) = 1
            //***********************************************************************

            public BigInteger genCoPrime(int bits, Random rand)
            {
                bool done = false;
                BigInteger result = new BigInteger();

                while (!done)
                {
                    result.genRandomBits(bits, rand);
                    //Console.WriteLine(result.ToString(16));

                    // gcd test
                    BigInteger g = result.gcd(this);
                    if (g.dataLength == 1 && g.data[0] == 1)
                        done = true;
                }

                return result;
            }
            //***********************************************************************
            // Overloading of addition operator
            //***********************************************************************

            public static BigInteger operator +(BigInteger bi1, BigInteger bi2)
            {
                BigInteger result = new BigInteger();

                result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

                long carry = 0;
                for (int i = 0; i < result.dataLength; i++)
                {
                    long sum = (long)bi1.data[i] + (long)bi2.data[i] + carry;
                    carry = sum >> 32;
                    result.data[i] = (uint)(sum & 0xFFFFFFFF);
                }

                if (carry != 0 && result.dataLength < maxLength)
                {
                    result.data[result.dataLength] = (uint)(carry);
                    result.dataLength++;
                }

                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;


                // overflow check
                int lastPos = maxLength - 1;
                if ((bi1.data[lastPos] & 0x80000000) == (bi2.data[lastPos] & 0x80000000) &&
                   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
                {
                    throw (new ArithmeticException());
                }

                return result;
            }
            //***********************************************************************
            // Returns the modulo inverse of this.  Throws ArithmeticException if
            // the inverse does not exist.  (i.e. gcd(this, modulus) != 1)
            //***********************************************************************

            public BigInteger modInverse(BigInteger modulus)
            {
                BigInteger[] p = { 0, 1 };
                BigInteger[] q = new BigInteger[2];    // quotients
                BigInteger[] r = { 0, 0 };             // remainders

                int step = 0;

                BigInteger a = modulus;
                BigInteger b = this;

                while (b.dataLength > 1 || (b.dataLength == 1 && b.data[0] != 0))
                {
                    BigInteger quotient = new BigInteger();
                    BigInteger remainder = new BigInteger();

                    if (step > 1)
                    {
                        BigInteger pval = (p[0] - (p[1] * q[0])) % modulus;
                        p[0] = p[1];
                        p[1] = pval;
                    }

                    if (b.dataLength == 1)
                        singleByteDivide(a, b, quotient, remainder);
                    else
                        multiByteDivide(a, b, quotient, remainder);

                    /*
                    Console.WriteLine(quotient.dataLength);
                    Console.WriteLine("{0} = {1}({2}) + {3}  p = {4}", a.ToString(10),
                                      b.ToString(10), quotient.ToString(10), remainder.ToString(10),
                                      p[1].ToString(10));
                    */

                    q[0] = q[1];
                    r[0] = r[1];
                    q[1] = quotient; r[1] = remainder;

                    a = b;
                    b = remainder;

                    step++;
                }

                if (r[0].dataLength > 1 || (r[0].dataLength == 1 && r[0].data[0] != 1))
                    throw (new ArithmeticException("No inverse!"));

                BigInteger result = ((p[0] - (p[1] * q[0])) % modulus);

                if ((result.data[maxLength - 1] & 0x80000000) != 0)
                    result += modulus;  // get the least positive modulus

                return result;
            }
            //***********************************************************************
            // Overloading of subtraction operator
            //***********************************************************************

            public static BigInteger operator -(BigInteger bi1, BigInteger bi2)
            {
                BigInteger result = new BigInteger();

                result.dataLength = (bi1.dataLength > bi2.dataLength) ? bi1.dataLength : bi2.dataLength;

                long carryIn = 0;
                for (int i = 0; i < result.dataLength; i++)
                {
                    long diff;

                    diff = (long)bi1.data[i] - (long)bi2.data[i] - carryIn;
                    result.data[i] = (uint)(diff & 0xFFFFFFFF);

                    if (diff < 0)
                        carryIn = 1;
                    else
                        carryIn = 0;
                }

                // roll over to negative
                if (carryIn != 0)
                {
                    for (int i = result.dataLength; i < maxLength; i++)
                        result.data[i] = 0xFFFFFFFF;
                    result.dataLength = maxLength;
                }

                // fixed in v1.03 to give correct datalength for a - (-b)
                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;

                // overflow check

                int lastPos = maxLength - 1;
                if ((bi1.data[lastPos] & 0x80000000) != (bi2.data[lastPos] & 0x80000000) &&
                   (result.data[lastPos] & 0x80000000) != (bi1.data[lastPos] & 0x80000000))
                {
                    throw (new ArithmeticException());
                }

                return result;
            }
            //***********************************************************************
            // Returns a value that is equivalent to the integer square root
            // of the BigInteger.
            //
            // The integer square root of "this" is defined as the largest integer n
            // such that (n * n) <= this
            //
            //***********************************************************************

            public BigInteger sqrt()
            {
                uint numBits = (uint)this.bitCount();

                if ((numBits & 0x1) != 0)        // odd number of bits
                    numBits = (numBits >> 1) + 1;
                else
                    numBits = (numBits >> 1);

                uint bytePos = numBits >> 5;
                byte bitPos = (byte)(numBits & 0x1F);

                uint mask;

                BigInteger result = new BigInteger();
                if (bitPos == 0)
                    mask = 0x80000000;
                else
                {
                    mask = (uint)1 << bitPos;
                    bytePos++;
                }
                result.dataLength = (int)bytePos;

                for (int i = (int)bytePos - 1; i >= 0; i--)
                {
                    while (mask != 0)
                    {
                        // guess
                        result.data[i] ^= mask;

                        // undo the guess if its square is larger than this
                        if ((result * result) > this)
                            result.data[i] ^= mask;

                        mask >>= 1;
                    }
                    mask = 0x80000000;
                }
                return result;
            }
            //***********************************************************************
            // Overloading of multiplication operator
            //***********************************************************************

            public static BigInteger operator *(BigInteger bi1, BigInteger bi2)
            {
                int lastPos = maxLength - 1;
                bool bi1Neg = false, bi2Neg = false;

                // take the absolute value of the inputs
                try
                {
                    if ((bi1.data[lastPos] & 0x80000000) != 0)     // bi1 negative
                    {
                        bi1Neg = true; bi1 = -bi1;
                    }
                    if ((bi2.data[lastPos] & 0x80000000) != 0)     // bi2 negative
                    {
                        bi2Neg = true; bi2 = -bi2;
                    }
                }
                catch (Exception) { }

                BigInteger result = new BigInteger();

                // multiply the absolute values
                try
                {
                    for (int i = 0; i < bi1.dataLength; i++)
                    {
                        if (bi1.data[i] == 0) continue;

                        ulong mcarry = 0;
                        for (int j = 0, k = i; j < bi2.dataLength; j++, k++)
                        {
                            // k = i + j
                            ulong val = ((ulong)bi1.data[i] * (ulong)bi2.data[j]) +
                                         (ulong)result.data[k] + mcarry;

                            result.data[k] = (uint)(val & 0xFFFFFFFF);
                            mcarry = (val >> 32);
                        }

                        if (mcarry != 0)
                            result.data[i + bi2.dataLength] = (uint)mcarry;
                    }
                }
                catch (Exception)
                {
                    throw (new ArithmeticException("Multiplication overflow."));
                }


                result.dataLength = bi1.dataLength + bi2.dataLength;
                if (result.dataLength > maxLength)
                    result.dataLength = maxLength;

                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;

                // overflow check (result is -ve)
                if ((result.data[lastPos] & 0x80000000) != 0)
                {
                    if (bi1Neg != bi2Neg && result.data[lastPos] == 0x80000000)    // different sign
                    {
                        // handle the special case where multiplication produces
                        // a max negative number in 2's complement.

                        if (result.dataLength == 1)
                            return result;
                        else
                        {
                            bool isMaxNeg = true;
                            for (int i = 0; i < result.dataLength - 1 && isMaxNeg; i++)
                            {
                                if (result.data[i] != 0)
                                    isMaxNeg = false;
                            }

                            if (isMaxNeg)
                                return result;
                        }
                    }

                    throw (new ArithmeticException("Multiplication overflow."));
                }

                // if input has different signs, then result is -ve
                if (bi1Neg != bi2Neg)
                    return -result;

                return result;
            }
            //***********************************************************************
            // Returns the k_th number in the Lucas Sequence reduced modulo n.
            //
            // Uses index doubling to speed up the process.  For example, to calculate V(k),
            // we maintain two numbers in the sequence V(n) and V(n+1).
            //
            // To obtain V(2n), we use the identity
            //      V(2n) = (V(n) * V(n)) - (2 * Q^n)
            // To obtain V(2n+1), we first write it as
            //      V(2n+1) = V((n+1) + n)
            // and use the identity
            //      V(m+n) = V(m) * V(n) - Q * V(m-n)
            // Hence,
            //      V((n+1) + n) = V(n+1) * V(n) - Q^n * V((n+1) - n)
            //                   = V(n+1) * V(n) - Q^n * V(1)
            //                   = V(n+1) * V(n) - Q^n * P
            //
            // We use k in its binary expansion and perform index doubling for each
            // bit position.  For each bit position that is set, we perform an
            // index doubling followed by an index addition.  This means that for V(n),
            // we need to update it to V(2n+1).  For V(n+1), we need to update it to
            // V((2n+1)+1) = V(2*(n+1))
            //
            // This function returns
            // [0] = U(k)
            // [1] = V(k)
            // [2] = Q^n
            //
            // Where U(0) = 0 % n, U(1) = 1 % n
            //       V(0) = 2 % n, V(1) = P % n
            //***********************************************************************

            public static BigInteger[] LucasSequence(BigInteger P, BigInteger Q,
                                                     BigInteger k, BigInteger n)
            {
                if (k.dataLength == 1 && k.data[0] == 0)
                {
                    BigInteger[] result = new BigInteger[3];

                    result[0] = 0; result[1] = 2 % n; result[2] = 1 % n;
                    return result;
                }

                // calculate constant = b^(2k) / m
                // for Barrett Reduction
                BigInteger constant = new BigInteger();

                int nLen = n.dataLength << 1;
                constant.data[nLen] = 0x00000001;
                constant.dataLength = nLen + 1;

                constant = constant / n;

                // calculate values of s and t
                int s = 0;

                for (int index = 0; index < k.dataLength; index++)
                {
                    uint mask = 0x01;

                    for (int i = 0; i < 32; i++)
                    {
                        if ((k.data[index] & mask) != 0)
                        {
                            index = k.dataLength;      // to break the outer loop
                            break;
                        }
                        mask <<= 1;
                        s++;
                    }
                }

                BigInteger t = k >> s;

                //Console.WriteLine("s = " + s + " t = " + t);
                return LucasSequenceHelper(P, Q, t, n, constant, s);
            }
            //***********************************************************************
            // Overloading of unary >> operators
            //***********************************************************************

            public static BigInteger operator >>(BigInteger bi1, int shiftVal)
            {
                BigInteger result = new BigInteger(bi1);
                result.dataLength = shiftRight(result.data, shiftVal);


                if ((bi1.data[maxLength - 1] & 0x80000000) != 0) // negative
                {
                    for (int i = maxLength - 1; i >= result.dataLength; i--)
                        result.data[i] = 0xFFFFFFFF;

                    uint mask = 0x80000000;
                    for (int i = 0; i < 32; i++)
                    {
                        if ((result.data[result.dataLength - 1] & mask) != 0)
                            break;

                        result.data[result.dataLength - 1] |= mask;
                        mask >>= 1;
                    }
                    result.dataLength = maxLength;
                }

                return result;
            }
            //***********************************************************************
            // Performs the calculation of the kth term in the Lucas Sequence.
            // For details of the algorithm, see reference [9].
            //
            // k must be odd.  i.e LSB == 1
            //***********************************************************************

            private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
                                                            BigInteger k, BigInteger n,
                                                            BigInteger constant, int s)
            {
                BigInteger[] result = new BigInteger[3];

                if ((k.data[0] & 0x00000001) == 0)
                    throw (new ArgumentException("Argument k must be odd."));

                int numbits = k.bitCount();
                uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

                // v = v0, v1 = v1, u1 = u1, Q_k = Q^0

                BigInteger v = 2 % n, Q_k = 1 % n,
                           v1 = P % n, u1 = Q_k;
                bool flag = true;

                for (int i = k.dataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k
                {
                    //Console.WriteLine("round");
                    while (mask != 0)
                    {
                        if (i == 0 && mask == 0x00000001)        // last bit
                            break;

                        if ((k.data[i] & mask) != 0)             // bit is set
                        {
                            // index doubling with addition

                            u1 = (u1 * v1) % n;

                            v = ((v * v1) - (P * Q_k)) % n;
                            v1 = n.BarrettReduction(v1 * v1, n, constant);
                            v1 = (v1 - ((Q_k * Q) << 1)) % n;

                            if (flag)
                                flag = false;
                            else
                                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

                            Q_k = (Q_k * Q) % n;
                        }
                        else
                        {
                            // index doubling
                            u1 = ((u1 * v) - Q_k) % n;

                            v1 = ((v * v1) - (P * Q_k)) % n;
                            v = n.BarrettReduction(v * v, n, constant);
                            v = (v - (Q_k << 1)) % n;

                            if (flag)
                            {
                                Q_k = Q % n;
                                flag = false;
                            }
                            else
                                Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                        }

                        mask >>= 1;
                    }
                    mask = 0x80000000;
                }

                // at this point u1 = u(n+1) and v = v(n)
                // since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

                u1 = ((u1 * v) - Q_k) % n;
                v = ((v * v1) - (P * Q_k)) % n;
                if (flag)
                    flag = false;
                else
                    Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

                Q_k = (Q_k * Q) % n;


                for (int i = 0; i < s; i++)
                {
                    // index doubling
                    u1 = (u1 * v) % n;
                    v = ((v * v) - (Q_k << 1)) % n;

                    if (flag)
                    {
                        Q_k = Q % n;
                        flag = false;
                    }
                    else
                        Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
                }

                result[0] = u1;
                result[1] = v;
                result[2] = Q_k;

                return result;
            }
            //***********************************************************************
            // Overloading of the NEGATE operator (2's complement)
            //***********************************************************************

            public static BigInteger operator -(BigInteger bi1)
            {
                // handle neg of zero separately since it'll cause an overflow
                // if we proceed.

                if (bi1.dataLength == 1 && bi1.data[0] == 0)
                    return (new BigInteger());

                BigInteger result = new BigInteger(bi1);

                // 1's complement
                for (int i = 0; i < maxLength; i++)
                    result.data[i] = (uint)(~(bi1.data[i]));

                // add one to result of 1's complement
                long val, carry = 1;
                int index = 0;

                while (carry != 0 && index < maxLength)
                {
                    val = (long)(result.data[index]);
                    val++;

                    result.data[index] = (uint)(val & 0xFFFFFFFF);
                    carry = val >> 32;

                    index++;
                }

                if ((bi1.data[maxLength - 1] & 0x80000000) == (result.data[maxLength - 1] & 0x80000000))
                    throw (new ArithmeticException("Overflow in negation.\n"));

                result.dataLength = maxLength;

                while (result.dataLength > 1 && result.data[result.dataLength - 1] == 0)
                    result.dataLength--;
                return result;
            }
            //***********************************************************************
            // Returns a string representing the BigInteger in sign-and-magnitude
            // format in the specified radix.
            //
            // Example
            // -------
            // If the value of BigInteger is -255 in base 10, then
            // ToString(16) returns "-FF"
            //
            //***********************************************************************

            public string ToString(int radix)
            {
                if (radix < 2 || radix > 36)
                    throw (new ArgumentException("Radix must be >= 2 and <= 36"));

                string charSet = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
                string result = "";

                BigInteger a = this;

                bool negative = false;
                if ((a.data[maxLength - 1] & 0x80000000) != 0)
                {
                    negative = true;
                    try
                    {
                        a = -a;
                    }
                    catch (Exception) { }
                }

                BigInteger quotient = new BigInteger();
                BigInteger remainder = new BigInteger();
                BigInteger biRadix = new BigInteger(radix);

                if (a.dataLength == 1 && a.data[0] == 0)
                    result = "0";
                else
                {
                    while (a.dataLength > 1 || (a.dataLength == 1 && a.data[0] != 0))
                    {
                        singleByteDivide(a, biRadix, quotient, remainder);

                        if (remainder.data[0] < 10)
                            result = remainder.data[0] + result;
                        else
                            result = charSet[(int)remainder.data[0] - 10] + result;

                        a = quotient;
                    }
                    if (negative)
                        result = "-" + result;
                }

                return result;
            }