Esempio n. 1
0
        static EvaluatedData Evaluate(Trained[,] trained, TrainingData refineData, int have)
        {
            if (refineData.level != have) return null;
            EvaluatedData e = new EvaluatedData() { level = refineData.level, Label = refineData.Label, DocCount = refineData.DocCount };
            for (int stop = 0; stop <= have; stop++)
            {
                if (trained[stop, have] == null) e.Score[stop] = float.MaxValue;
                else e.Score[stop] = trained[stop, have].predictor.Predict(new TrainingData(refineData, stop)).Score;
            }

            return e;
        }
Esempio n. 2
0
        static bool Score(EvaluatedData ev, float[] current, out float cost, out float origCost)
        {
            origCost = ev.DocCount;
            float end = ev.DocCount;
            for (int i = 0; i <=ev.level; i++)
            {
                if (ev.Score[i] <= current[i])
                {
                    end = TrainingData.Range[0];
                    break;
                }
            }

            cost = (float)Math.Min(end, origCost);

            return end >= ev.Label;
        }