public void ProcessCTFOneAngle(Image angleImage, float angle, bool fromScratch, bool fixAstigmatism, float2 astigmatism, CTF previousCTF, CubicGrid previousGrid, Cubic1D previousBackground, Cubic1D previousScale, out CTF thisCTF, out CubicGrid thisGrid, out float2[] thisPS1D, out Cubic1D thisBackground, out Cubic1D thisScale, out Image thisPS2D) { CTF TempCTF = previousCTF != null ? previousCTF.GetCopy() : new CTF(); float2[] TempPS1D = null; Cubic1D TempBackground = null, TempScale = null; CubicGrid TempGrid = null; #region Dimensions and grids int NFrames = angleImage.Dims.Z; int2 DimsImage = angleImage.DimsSlice; int2 DimsRegion = new int2(MainWindow.Options.CTFWindow, MainWindow.Options.CTFWindow); float OverlapFraction = 0.5f; int2 DimsPositionGrid; int3[] PositionGrid = Helper.GetEqualGridSpacing(DimsImage, new int2(DimsRegion.X, DimsRegion.Y), OverlapFraction, out DimsPositionGrid); int NPositions = (int)DimsPositionGrid.Elements(); if (previousGrid == null) TempGrid = new CubicGrid(new int3(2, 2, 1)); else TempGrid = new CubicGrid(new int3(2, 2, 1), previousGrid.FlatValues); bool CTFSpace = true; bool CTFTime = false; int3 CTFSpectraGrid = new int3(DimsPositionGrid.X, DimsPositionGrid.Y, 1); int MinFreqInclusive = (int)(MainWindow.Options.CTFRangeMin * DimsRegion.X / 2); int MaxFreqExclusive = (int)(MainWindow.Options.CTFRangeMax * DimsRegion.X / 2); int NFreq = MaxFreqExclusive - MinFreqInclusive; #endregion #region Allocate GPU memory Image CTFSpectra = new Image(IntPtr.Zero, new int3(DimsRegion.X, DimsRegion.X, (int)CTFSpectraGrid.Elements()), true); Image CTFMean = new Image(IntPtr.Zero, new int3(DimsRegion), true); Image CTFCoordsCart = new Image(new int3(DimsRegion), true, true); Image CTFCoordsPolarTrimmed = new Image(new int3(NFreq, DimsRegion.X, 1), false, true); #endregion // Extract movie regions, create individual spectra in Cartesian coordinates and their mean. #region Create spectra GPU.CreateSpectra(angleImage.GetDevice(Intent.Read), DimsImage, NFrames, PositionGrid, NPositions, DimsRegion, CTFSpectraGrid, CTFSpectra.GetDevice(Intent.Write), CTFMean.GetDevice(Intent.Write)); angleImage.FreeDevice(); // Won't need it in this method anymore. #endregion // Populate address arrays for later. #region Init addresses { float2[] CoordsData = new float2[CTFCoordsCart.ElementsSliceComplex]; Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => CoordsData[y * (DimsRegion.X / 2 + 1) + x] = new float2(r, a)); CTFCoordsCart.UpdateHostWithComplex(new[] { CoordsData }); CoordsData = new float2[NFreq * DimsRegion.X]; Helper.ForEachElement(CTFCoordsPolarTrimmed.DimsSlice, (x, y) => { float Angle = ((float)y / DimsRegion.X + 0.5f) * (float)Math.PI; float Ny = 1f / DimsRegion.X; CoordsData[y * NFreq + x] = new float2((x + MinFreqInclusive) * Ny, Angle); }); CTFCoordsPolarTrimmed.UpdateHostWithComplex(new[] { CoordsData }); } #endregion // Retrieve average 1D spectrum from CTFMean (not corrected for astigmatism yet). #region Initial 1D spectrum { Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); GPU.CTFMakeAverage(CTFMean.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFMean.ElementsSliceReal, (uint)DimsRegion.X, new[] { new CTF().ToStruct() }, new CTF().ToStruct(), 0, (uint)DimsRegion.X / 2, null, 1, CTFAverage1D.GetDevice(Intent.Write)); //CTFAverage1D.WriteMRC("CTFAverage1D.mrc"); float[] CTFAverage1DData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[DimsRegion.X / 2]; for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, (float)Math.Round(CTFAverage1DData[i], 4)); TempPS1D = ForPS1D; CTFAverage1D.Dispose(); } #endregion #region Background fitting methods Action UpdateBackgroundFit = () => { float2[] ForPS1D = TempPS1D.Skip(Math.Max(5, MinFreqInclusive / 2)).ToArray(); Cubic1D.FitCTF(ForPS1D, v => v.Select(x => TempCTF.Get1D(x / (float)TempCTF.PixelSize, true)).ToArray(), TempCTF.GetZeros(), TempCTF.GetPeaks(), out TempBackground, out TempScale); }; Action<bool> UpdateRotationalAverage = keepbackground => { float[] MeanData = CTFMean.GetHost(Intent.Read)[0]; Image CTFMeanCorrected = new Image(new int3(DimsRegion), true); float[] MeanCorrectedData = CTFMeanCorrected.GetHost(Intent.Write)[0]; // Subtract current background estimate from spectra, populate coords. Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => { int i = y * (DimsRegion.X / 2 + 1) + x; MeanCorrectedData[i] = MeanData[i] - TempBackground.Interp(r / DimsRegion.X); }); Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); GPU.CTFMakeAverage(CTFMeanCorrected.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFMeanCorrected.DimsEffective.ElementsSlice(), (uint)DimsRegion.X, new[] { TempCTF.ToStruct() }, TempCTF.ToStruct(), 0, (uint)DimsRegion.X / 2, null, 1, CTFAverage1D.GetDevice(Intent.Write)); //CTFAverage1D.WriteMRC("CTFAverage1D.mrc"); float[] RotationalAverageData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[TempPS1D.Length]; if (keepbackground) for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, RotationalAverageData[i] + TempBackground.Interp((float)i / DimsRegion.X)); else for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, RotationalAverageData[i]); MathHelper.UnNaN(ForPS1D); TempPS1D = ForPS1D; CTFMeanCorrected.Dispose(); CTFAverage1D.Dispose(); }; #endregion // Fit background to currently best average (not corrected for astigmatism yet). { float2[] ForPS1D = TempPS1D.Skip(MinFreqInclusive).Take(Math.Max(2, NFreq / 2)).ToArray(); float[] CurrentBackground; //if (previousBackground == null) { int NumNodes = Math.Max(3, (int)((MainWindow.Options.CTFRangeMax - MainWindow.Options.CTFRangeMin) * 5M)); TempBackground = Cubic1D.Fit(ForPS1D, NumNodes); // This won't fit falloff and scale, because approx function is 0 CurrentBackground = TempBackground.Interp(TempPS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 2).ToArray(); } /*else { CurrentBackground = previousBackground.Interp(TempPS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 2).ToArray(); TempBackground = new Cubic1D(previousBackground.Data); }*/ float[] Subtracted1D = new float[ForPS1D.Length]; for (int i = 0; i < ForPS1D.Length; i++) Subtracted1D[i] = ForPS1D[i].Y - CurrentBackground[i]; MathHelper.NormalizeInPlace(Subtracted1D); float ZMin = (float)MainWindow.Options.CTFZMin; float ZMax = (float)MainWindow.Options.CTFZMax; float PhaseMin = 0f; float PhaseMax = MainWindow.Options.CTFDoPhase ? 1f : 0f; if (previousCTF != null) { ZMin = (float)previousCTF.Defocus - 0.5f; ZMax = (float)previousCTF.Defocus + 0.5f; if (PhaseMax > 0) { PhaseMin = (float)previousCTF.PhaseShift - 0.3f; PhaseMax = (float)previousCTF.PhaseShift + 0.3f; } } float ZStep = (ZMax - ZMin) / 100f; float BestZ = 0, BestPhase = 0, BestScore = -999; for (float z = ZMin; z <= ZMax + 1e-5f; z += ZStep) { for (float p = PhaseMin; p <= PhaseMax; p += 0.01f) { CTF CurrentParams = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, Defocus = (decimal)z, PhaseShift = (decimal)p, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; float[] SimulatedCTF = CurrentParams.Get1D(TempPS1D.Length, true).Skip(MinFreqInclusive).Take(Math.Max(2, NFreq / 2)).ToArray(); MathHelper.NormalizeInPlace(SimulatedCTF); float Score = MathHelper.CrossCorrelate(Subtracted1D, SimulatedCTF); if (Score > BestScore) { BestScore = Score; BestZ = z; BestPhase = p; } } } TempCTF = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, Defocus = (decimal)BestZ, PhaseShift = (decimal)BestPhase, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; UpdateRotationalAverage(true); // This doesn't have a nice background yet. UpdateBackgroundFit(); // Now get a reasonably nice background. } // Fit defocus, (phase shift), (astigmatism) to average background-subtracted spectrum, // which is in polar coords at this point (for equal weighting of all frequencies). #region Grid search if (fromScratch) { Image CTFMeanPolarTrimmed = CTFMean.AsPolar((uint)MinFreqInclusive, (uint)(MinFreqInclusive + NFreq / 1)); // Subtract current background. Image CurrentBackground = new Image(TempBackground.Interp(TempPS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 1).ToArray()); CTFMeanPolarTrimmed.SubtractFromLines(CurrentBackground); CurrentBackground.Dispose(); // Normalize for CC (not strictly needed, but it's converted for fp16 later, so let's be on the safe side of the fp16 range. GPU.Normalize(CTFMeanPolarTrimmed.GetDevice(Intent.Read), CTFMeanPolarTrimmed.GetDevice(Intent.Write), (uint)CTFMeanPolarTrimmed.ElementsReal, 1); //CTFMeanPolarTrimmed.WriteMRC("ctfmeanpolartrimmed.mrc"); CTF StartParams = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, PixelSizeDelta = Math.Abs(MainWindow.Options.CTFPixelMax - MainWindow.Options.CTFPixelMin), PixelSizeAngle = MainWindow.Options.CTFPixelAngle, Defocus = TempCTF.Defocus, // (MainWindow.Options.CTFZMin + MainWindow.Options.CTFZMax) * 0.5M, DefocusDelta = 0, DefocusAngle = 0, PhaseShift = TempCTF.PhaseShift, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; CTFFitStruct FitParams = new CTFFitStruct { Defocus = new float3(-0.4e-6f, 0.4e-6f, 0.025e-6f), Defocusdelta = new float3(0, 0.8e-6f, 0.02e-6f), Astigmatismangle = new float3(0, 2 * (float)Math.PI, 1 * (float)Math.PI / 18), Phaseshift = MainWindow.Options.CTFDoPhase ? new float3(-0.2f * (float)Math.PI, 0.2f * (float)Math.PI, 0.025f * (float)Math.PI) : new float3(0, 0, 0) }; CTFStruct ResultStruct = GPU.CTFFitMean(CTFMeanPolarTrimmed.GetDevice(Intent.Read), CTFCoordsPolarTrimmed.GetDevice(Intent.Read), CTFMeanPolarTrimmed.DimsSlice, StartParams.ToStruct(), FitParams, true); TempCTF.FromStruct(ResultStruct); TempCTF.Defocus = Math.Max(TempCTF.Defocus, MainWindow.Options.CTFZMin); CTFMeanPolarTrimmed.Dispose(); UpdateRotationalAverage(true); // This doesn't have a nice background yet. UpdateBackgroundFit(); // Now get a reasonably nice background. UpdateRotationalAverage(true); // This time, with the nice background. UpdateBackgroundFit(); // Make the background even nicer! } else if (previousCTF != null) { TempCTF.DefocusDelta = previousCTF.DefocusDelta; TempCTF.DefocusAngle = previousCTF.DefocusAngle; } if (fixAstigmatism) { TempCTF.DefocusDelta = (decimal)astigmatism.X; TempCTF.DefocusAngle = (decimal)astigmatism.Y; } #endregion if (previousGrid == null) TempGrid = new CubicGrid(TempGrid.Dimensions, (float)TempCTF.Defocus, (float)TempCTF.Defocus, Dimension.X); // Do BFGS optimization of defocus, astigmatism and phase shift, // using 2D simulation for comparison #region BFGS bool[] CTFSpectraConsider = new bool[CTFSpectraGrid.Elements()]; for (int i = 0; i < CTFSpectraConsider.Length; i++) CTFSpectraConsider[i] = true; int NCTFSpectraConsider = CTFSpectraConsider.Length; { Image CTFSpectraPolarTrimmed = CTFSpectra.AsPolar((uint)MinFreqInclusive, (uint)(MinFreqInclusive + NFreq)); CTFSpectra.FreeDevice(); // This will only be needed again for the final PS1D. #region Create background and scale float[] CurrentScale = TempScale.Interp(TempPS1D.Select(p => p.X).ToArray()); Image CTFSpectraScale = new Image(new int3(NFreq, DimsRegion.X, 1)); float[] CTFSpectraScaleData = CTFSpectraScale.GetHost(Intent.Write)[0]; // Trim polar to relevant frequencies, and populate coordinates. Parallel.For(0, DimsRegion.X, y => { for (int x = 0; x < NFreq; x++) CTFSpectraScaleData[y * NFreq + x] = CurrentScale[x + MinFreqInclusive]; }); //CTFSpectraScale.WriteMRC("ctfspectrascale.mrc"); // Background is just 1 line since we're in polar. Image CurrentBackground = new Image(TempBackground.Interp(TempPS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq).ToArray()); #endregion CTFSpectraPolarTrimmed.SubtractFromLines(CurrentBackground); CurrentBackground.Dispose(); // Normalize background-subtracted spectra. GPU.Normalize(CTFSpectraPolarTrimmed.GetDevice(Intent.Read), CTFSpectraPolarTrimmed.GetDevice(Intent.Write), (uint)CTFSpectraPolarTrimmed.ElementsSliceReal, (uint)CTFSpectraGrid.Elements()); //CTFSpectraPolarTrimmed.WriteMRC("ctfspectrapolartrimmed.mrc"); #region Convert to fp16 Image CTFSpectraPolarTrimmedHalf = CTFSpectraPolarTrimmed.AsHalf(); CTFSpectraPolarTrimmed.Dispose(); Image CTFSpectraScaleHalf = CTFSpectraScale.AsHalf(); CTFSpectraScale.Dispose(); Image CTFCoordsPolarTrimmedHalf = CTFCoordsPolarTrimmed.AsHalf(); #endregion // Wiggle weights show how the defocus on the spectra grid is altered // by changes in individual anchor points of the spline grid. // They are used later to compute the dScore/dDefocus values for each spectrum // only once, and derive the values for each anchor point from them. float[][] WiggleWeights = TempGrid.GetWiggleWeights(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); // Helper method for getting CTFStructs for the entire spectra grid. Func<double[], CTF, float[], CTFStruct[]> EvalGetCTF = (input, ctf, defocusValues) => { decimal AlteredPhase = MainWindow.Options.CTFDoPhase ? (decimal)input[input.Length - 3] : 0; decimal AlteredDelta = (decimal)input[input.Length - 2]; decimal AlteredAngle = (decimal)(input[input.Length - 1] * 20 / (Math.PI / 180)); CTF Local = ctf.GetCopy(); Local.PhaseShift = AlteredPhase; Local.DefocusDelta = AlteredDelta; Local.DefocusAngle = AlteredAngle; CTFStruct LocalStruct = Local.ToStruct(); CTFStruct[] LocalParams = new CTFStruct[defocusValues.Length]; for (int i = 0; i < LocalParams.Length; i++) { LocalParams[i] = LocalStruct; LocalParams[i].Defocus = defocusValues[i] * -1e-6f; } return LocalParams; }; // Simulate with adjusted CTF, compare to originals #region Eval and Gradient methods Func<double[], double> Eval = input => { CubicGrid Altered = new CubicGrid(TempGrid.Dimensions, input.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] DefocusValues = Altered.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); CTFStruct[] LocalParams = EvalGetCTF(input, TempCTF, DefocusValues); float[] Result = new float[LocalParams.Length]; GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, Result, (uint)LocalParams.Length); float Score = 0; for (int i = 0; i < Result.Length; i++) if (CTFSpectraConsider[i]) Score += Result[i]; Score /= NCTFSpectraConsider; if (float.IsNaN(Score) || float.IsInfinity(Score)) throw new Exception("Bad score."); return (1.0 - Score) * 1000.0; }; Func<double[], double[]> Gradient = input => { const float Step = 0.005f; double[] Result = new double[input.Length]; // In 0D grid case, just get gradient for all 4 parameters. // In 1+D grid case, do simple gradient for astigmatism and phase... int StartComponent = input.Length - 3; //int StartComponent = 0; for (int i = StartComponent; i < input.Length; i++) { if (fixAstigmatism && i > StartComponent) continue; double[] UpperInput = new double[input.Length]; input.CopyTo(UpperInput, 0); UpperInput[i] += Step; double UpperValue = Eval(UpperInput); double[] LowerInput = new double[input.Length]; input.CopyTo(LowerInput, 0); LowerInput[i] -= Step; double LowerValue = Eval(LowerInput); Result[i] = (UpperValue - LowerValue) / (2f * Step); } float[] ResultPlus = new float[CTFSpectraGrid.Elements()]; float[] ResultMinus = new float[CTFSpectraGrid.Elements()]; // ..., take shortcut for defoci... { { CubicGrid AlteredPlus = new CubicGrid(TempGrid.Dimensions, input.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v + Step).ToArray()); float[] DefocusValues = AlteredPlus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); CTFStruct[] LocalParams = EvalGetCTF(input, TempCTF, DefocusValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultPlus, (uint)LocalParams.Length); } { CubicGrid AlteredMinus = new CubicGrid(TempGrid.Dimensions, input.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v - Step).ToArray()); float[] DefocusValues = AlteredMinus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); CTFStruct[] LocalParams = EvalGetCTF(input, TempCTF, DefocusValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultMinus, (uint)LocalParams.Length); } float[] LocalGradients = new float[ResultPlus.Length]; for (int i = 0; i < LocalGradients.Length; i++) LocalGradients[i] = ResultMinus[i] - ResultPlus[i]; // Now compute gradients per grid anchor point using the precomputed individual gradients and wiggle factors. Parallel.For(0, TempGrid.Dimensions.Elements(), i => Result[i] = MathHelper.ReduceWeighted(LocalGradients, WiggleWeights[i]) / LocalGradients.Length / (2f * Step) * 1000f); } foreach (var i in Result) if (double.IsNaN(i) || double.IsInfinity(i)) throw new Exception("Bad score."); return Result; }; #endregion #region Minimize first time with potential outpiers double[] StartParams = new double[TempGrid.Dimensions.Elements() + 3]; for (int i = 0; i < TempGrid.Dimensions.Elements(); i++) StartParams[i] = TempGrid.FlatValues[i]; StartParams[StartParams.Length - 3] = (double)TempCTF.PhaseShift; StartParams[StartParams.Length - 2] = (double)TempCTF.DefocusDelta; StartParams[StartParams.Length - 1] = (double)TempCTF.DefocusAngle / 20 * (Math.PI / 180); // Compute correlation for individual spectra, and throw away those that are >.75 sigma worse than mean. BroydenFletcherGoldfarbShanno Optimizer = new BroydenFletcherGoldfarbShanno(StartParams.Length, Eval, Gradient) { Past = 1, Delta = 1e-6, MaxLineSearch = 15, Corrections = 20 }; Optimizer.Minimize(StartParams); #endregion #region Retrieve parameters TempCTF.Defocus = (decimal)MathHelper.Mean(Optimizer.Solution.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v)); TempCTF.PhaseShift = (decimal)Optimizer.Solution[StartParams.Length - 3]; TempCTF.DefocusDelta = (decimal)Optimizer.Solution[StartParams.Length - 2]; TempCTF.DefocusAngle = (decimal)(Optimizer.Solution[StartParams.Length - 1] * 20 / (Math.PI / 180)); if (TempCTF.DefocusDelta < 0) { TempCTF.DefocusAngle += 90; TempCTF.DefocusDelta *= -1; } TempCTF.DefocusAngle = ((int)TempCTF.DefocusAngle + 180 * 99) % 180; TempGrid = new CubicGrid(TempGrid.Dimensions, Optimizer.Solution.Take((int)TempGrid.Dimensions.Elements()).Select(v => (float)v).ToArray()); #endregion // Dispose GPU resources manually because GC can't be bothered to do it in time. CTFSpectraPolarTrimmedHalf.Dispose(); CTFCoordsPolarTrimmedHalf.Dispose(); CTFSpectraScaleHalf.Dispose(); #region Get nicer envelope fit { { Image CTFSpectraBackground = new Image(new int3(DimsRegion), true); float[] CTFSpectraBackgroundData = CTFSpectraBackground.GetHost(Intent.Write)[0]; // Construct background in Cartesian coordinates. Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => { CTFSpectraBackgroundData[y * CTFSpectraBackground.DimsEffective.X + x] = TempBackground.Interp(r / DimsRegion.X); }); CTFSpectra.SubtractFromSlices(CTFSpectraBackground); float[] DefocusValues = TempGrid.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 0)); CTFStruct[] LocalParams = DefocusValues.Select(v => { CTF Local = TempCTF.GetCopy(); Local.Defocus = (decimal)v + 0.0M; return Local.ToStruct(); }).ToArray(); Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); CTF CTFAug = TempCTF.GetCopy(); CTFAug.Defocus += 0.0M; GPU.CTFMakeAverage(CTFSpectra.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFSpectra.ElementsSliceReal, (uint)DimsRegion.X, LocalParams, CTFAug.ToStruct(), 0, (uint)DimsRegion.X / 2, CTFSpectraConsider.Select(v => v ? 1 : 0).ToArray(), (uint)CTFSpectraGrid.Elements(), CTFAverage1D.GetDevice(Intent.Write)); CTFSpectra.AddToSlices(CTFSpectraBackground); float[] RotationalAverageData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[TempPS1D.Length]; for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, (float)Math.Round(RotationalAverageData[i], 4) + TempBackground.Interp((float)i / DimsRegion.X)); MathHelper.UnNaN(ForPS1D); TempPS1D = ForPS1D; CTFSpectraBackground.Dispose(); CTFAverage1D.Dispose(); CTFSpectra.FreeDevice(); } TempCTF.Defocus = Math.Max(TempCTF.Defocus, MainWindow.Options.CTFZMin); UpdateBackgroundFit(); } #endregion } #endregion // Subtract background from 2D average and write it to disk. // This image is used for quick visualization purposes only. #region PS2D update { int3 DimsAverage = new int3(DimsRegion.X, DimsRegion.X / 2, 1); float[] Average2DData = new float[DimsAverage.Elements()]; float[] OriginalAverageData = CTFMean.GetHost(Intent.Read)[0]; for (int y = 0; y < DimsAverage.Y; y++) { int yy = y * y; for (int x = 0; x < DimsAverage.Y; x++) { int xx = DimsRegion.X / 2 - x - 1; xx *= xx; float r = (float)Math.Sqrt(xx + yy) / DimsRegion.X; Average2DData[y * DimsAverage.X + x] = OriginalAverageData[(y + DimsRegion.X / 2) * (DimsRegion.X / 2 + 1) + x] - TempBackground.Interp(r); } for (int x = 0; x < DimsRegion.X / 2; x++) { int xx = x * x; float r = (float)Math.Sqrt(xx + yy) / DimsRegion.X; Average2DData[y * DimsAverage.X + x + DimsRegion.X / 2] = OriginalAverageData[(DimsRegion.X / 2 - y) * (DimsRegion.X / 2 + 1) + (DimsRegion.X / 2 - 1 - x)] - TempBackground.Interp(r); } } thisPS2D = new Image(Average2DData, DimsAverage); } #endregion for (int i = 0; i < TempPS1D.Length; i++) TempPS1D[i].Y -= TempBackground.Interp(TempPS1D[i].X); CTFSpectra.Dispose(); CTFMean.Dispose(); CTFCoordsCart.Dispose(); CTFCoordsPolarTrimmed.Dispose(); thisPS1D = TempPS1D; thisBackground = TempBackground; thisScale = TempScale; thisCTF = TempCTF; thisGrid = TempGrid; }
public virtual void ProcessCTF(MapHeader originalHeader, Image originalStack, bool doastigmatism, decimal scaleFactor) { if (!Directory.Exists(PowerSpectrumDir)) Directory.CreateDirectory(PowerSpectrumDir); //CTF = new CTF(); PS1D = null; _SimulatedBackground = null; _SimulatedScale = new Cubic1D(new[] { new float2(0, 1), new float2(1, 1) }); #region Dimensions and grids int NFrames = originalHeader.Dimensions.Z; int2 DimsImage = new int2(originalHeader.Dimensions); int2 DimsRegion = new int2(MainWindow.Options.CTFWindow, MainWindow.Options.CTFWindow); float OverlapFraction = 0.5f; int2 DimsPositionGrid; int3[] PositionGrid = Helper.GetEqualGridSpacing(DimsImage, new int2(DimsRegion.X / 1, DimsRegion.Y / 1), OverlapFraction, out DimsPositionGrid); int NPositions = (int)DimsPositionGrid.Elements(); int CTFGridX = Math.Min(DimsPositionGrid.X, MainWindow.Options.GridCTFX); int CTFGridY = Math.Min(DimsPositionGrid.Y, MainWindow.Options.GridCTFY); int CTFGridZ = Math.Min(NFrames, MainWindow.Options.GridCTFZ); GridCTF = new CubicGrid(new int3(CTFGridX, CTFGridY, CTFGridZ)); GridCTFPhase = new CubicGrid(new int3(1, 1, CTFGridZ)); bool CTFSpace = CTFGridX * CTFGridY > 1; bool CTFTime = CTFGridZ > 1; int3 CTFSpectraGrid = new int3(CTFSpace ? DimsPositionGrid.X : 1, CTFSpace ? DimsPositionGrid.Y : 1, CTFTime ? CTFGridZ : 1); int MinFreqInclusive = (int)(MainWindow.Options.CTFRangeMin * DimsRegion.X / 2); int MaxFreqExclusive = (int)(MainWindow.Options.CTFRangeMax * DimsRegion.X / 2); int NFreq = MaxFreqExclusive - MinFreqInclusive; float PixelSize = (float)(MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5f; float PixelDelta = (float)(MainWindow.Options.CTFPixelMax - MainWindow.Options.CTFPixelMin) * 0.5f; float PixelAngle = (float)MainWindow.Options.CTFPixelAngle / 180f * (float)Math.PI; #endregion #region Allocate GPU memory Image CTFSpectra = new Image(IntPtr.Zero, new int3(DimsRegion.X, DimsRegion.X, (int)CTFSpectraGrid.Elements()), true); Image CTFMean = new Image(IntPtr.Zero, new int3(DimsRegion), true); Image CTFCoordsCart = new Image(new int3(DimsRegion), true, true); Image CTFCoordsPolarTrimmed = new Image(new int3(NFreq, DimsRegion.X, 1), false, true); #endregion // Extract movie regions, create individual spectra in Cartesian coordinates and their mean. #region Create spectra GPU.CreateSpectra(originalStack.GetDevice(Intent.Read), DimsImage, NFrames, PositionGrid, NPositions, DimsRegion, CTFSpectraGrid, CTFSpectra.GetDevice(Intent.Write), CTFMean.GetDevice(Intent.Write)); originalStack.FreeDevice(); // Won't need it in this method anymore. #endregion // Populate address arrays for later. #region Init addresses { float2[] CoordsData = new float2[CTFCoordsCart.ElementsSliceComplex]; Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => CoordsData[y * (DimsRegion.X / 2 + 1) + x] = new float2(r, a)); CTFCoordsCart.UpdateHostWithComplex(new[] { CoordsData }); CoordsData = new float2[NFreq * DimsRegion.X]; Helper.ForEachElement(CTFCoordsPolarTrimmed.DimsSlice, (x, y) => { float Angle = ((float)y / DimsRegion.X + 0.5f) * (float)Math.PI; float Ny = 1f / DimsRegion.X; CoordsData[y * NFreq + x] = new float2((x + MinFreqInclusive) * Ny, Angle); }); CTFCoordsPolarTrimmed.UpdateHostWithComplex(new[] { CoordsData }); } #endregion // Retrieve average 1D spectrum from CTFMean (not corrected for astigmatism yet). #region Initial 1D spectrum { Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); GPU.CTFMakeAverage(CTFMean.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFMean.ElementsSliceReal, (uint)DimsRegion.X, new[] { new CTF().ToStruct() }, new CTF().ToStruct(), 0, (uint)DimsRegion.X / 2, null, 1, CTFAverage1D.GetDevice(Intent.Write)); //CTFAverage1D.WriteMRC("CTFAverage1D.mrc"); float[] CTFAverage1DData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[DimsRegion.X / 2]; for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, (float)Math.Round(CTFAverage1DData[i], 4)); _PS1D = ForPS1D; CTFAverage1D.Dispose(); } #endregion #region Background fitting methods Action UpdateBackgroundFit = () => { float2[] ForPS1D = PS1D.Skip(Math.Max(5, MinFreqInclusive / 2)).ToArray(); Cubic1D.FitCTF(ForPS1D, v => v.Select(x => CTF.Get1D(x / (float)CTF.PixelSize, true)).ToArray(), CTF.GetZeros(), CTF.GetPeaks(), out _SimulatedBackground, out _SimulatedScale); }; Action<bool> UpdateRotationalAverage = keepbackground => { float[] MeanData = CTFMean.GetHost(Intent.Read)[0]; Image CTFMeanCorrected = new Image(new int3(DimsRegion), true); float[] MeanCorrectedData = CTFMeanCorrected.GetHost(Intent.Write)[0]; // Subtract current background estimate from spectra, populate coords. Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => { int i = y * (DimsRegion.X / 2 + 1) + x; MeanCorrectedData[i] = MeanData[i] - _SimulatedBackground.Interp(r / DimsRegion.X); }); Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); GPU.CTFMakeAverage(CTFMeanCorrected.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFMeanCorrected.DimsEffective.ElementsSlice(), (uint)DimsRegion.X, new[] { CTF.ToStruct() }, CTF.ToStruct(), 0, (uint)DimsRegion.X / 2, null, 1, CTFAverage1D.GetDevice(Intent.Write)); //CTFAverage1D.WriteMRC("CTFAverage1D.mrc"); float[] RotationalAverageData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[PS1D.Length]; if (keepbackground) for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, RotationalAverageData[i] + _SimulatedBackground.Interp((float)i / DimsRegion.X)); else for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, RotationalAverageData[i]); MathHelper.UnNaN(ForPS1D); _PS1D = ForPS1D; CTFMeanCorrected.Dispose(); CTFAverage1D.Dispose(); }; #endregion // Fit background to currently best average (not corrected for astigmatism yet). { float2[] ForPS1D = PS1D.Skip(MinFreqInclusive).Take(Math.Max(2, NFreq / 2)).ToArray(); int NumNodes = Math.Max(3, (int)((MainWindow.Options.CTFRangeMax - MainWindow.Options.CTFRangeMin) * 5M)); _SimulatedBackground = Cubic1D.Fit(ForPS1D, NumNodes); // This won't fit falloff and scale, because approx function is 0 float[] CurrentBackground = _SimulatedBackground.Interp(PS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 2).ToArray(); float[] Subtracted1D = new float[ForPS1D.Length]; for (int i = 0; i < ForPS1D.Length; i++) Subtracted1D[i] = ForPS1D[i].Y - CurrentBackground[i]; MathHelper.NormalizeInPlace(Subtracted1D); float ZMin = (float)MainWindow.Options.CTFZMin; float ZMax = (float)MainWindow.Options.CTFZMax; float ZStep = (ZMax - ZMin) / 100f; float BestZ = 0, BestPhase = 0, BestScore = -999; for (float z = ZMin; z <= ZMax + 1e-5f; z += ZStep) { for (float p = 0; p <= (MainWindow.Options.CTFDoPhase ? 1f : 0f); p += 0.01f) { CTF CurrentParams = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, Defocus = (decimal)z, PhaseShift = (decimal)p, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; float[] SimulatedCTF = CurrentParams.Get1D(PS1D.Length, true).Skip(MinFreqInclusive).Take(Math.Max(2, NFreq / 2)).ToArray(); MathHelper.NormalizeInPlace(SimulatedCTF); float Score = MathHelper.CrossCorrelate(Subtracted1D, SimulatedCTF); if (Score > BestScore) { BestScore = Score; BestZ = z; BestPhase = p; } } } CTF = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, Defocus = (decimal)BestZ, PhaseShift = (decimal)BestPhase, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; UpdateRotationalAverage(true); // This doesn't have a nice background yet. UpdateBackgroundFit(); // Now get a reasonably nice background. } // Fit defocus, (phase shift), (astigmatism) to average background-subtracted spectrum, // which is in polar coords at this point (for equal weighting of all frequencies). #region Grid search { Image CTFMeanPolarTrimmed = CTFMean.AsPolar((uint)MinFreqInclusive, (uint)(MinFreqInclusive + NFreq / 1)); // Subtract current background. Image CurrentBackground = new Image(_SimulatedBackground.Interp(PS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq / 1).ToArray()); CTFMeanPolarTrimmed.SubtractFromLines(CurrentBackground); CurrentBackground.Dispose(); /*Image WaterMask = new Image(new int3(NFreq, 1, 1)); float[] WaterData = WaterMask.GetHost(Intent.Write)[0]; for (int i = 0; i < NFreq; i++) { float f = (i + MinFreqInclusive) / (float)DimsRegion.X * 2f; WaterData[i] = f > 0.2f && f < 0.6f ? 0f : 1f; } //CTFMeanPolarTrimmed.MultiplyLines(WaterMask); WaterMask.Dispose();*/ // Normalize for CC (not strictly needed, but it's converted for fp16 later, so let's be on the safe side of the fp16 range. GPU.Normalize(CTFMeanPolarTrimmed.GetDevice(Intent.Read), CTFMeanPolarTrimmed.GetDevice(Intent.Write), (uint)CTFMeanPolarTrimmed.ElementsReal, 1); //CTFMeanPolarTrimmed.WriteMRC("ctfmeanpolartrimmed.mrc"); CTF StartParams = new CTF { PixelSize = (MainWindow.Options.CTFPixelMin + MainWindow.Options.CTFPixelMax) * 0.5M, PixelSizeDelta = Math.Abs(MainWindow.Options.CTFPixelMax - MainWindow.Options.CTFPixelMin), PixelSizeAngle = MainWindow.Options.CTFPixelAngle, Defocus = CTF.Defocus,// (MainWindow.Options.CTFZMin + MainWindow.Options.CTFZMax) * 0.5M, DefocusDelta = doastigmatism ? 0 : MainWindow.Options.CTFAstigmatism, DefocusAngle = doastigmatism ? 0 : MainWindow.Options.CTFAstigmatismAngle, Cs = MainWindow.Options.CTFCs, Voltage = MainWindow.Options.CTFVoltage, Amplitude = MainWindow.Options.CTFAmplitude }; CTFFitStruct FitParams = new CTFFitStruct { //Pixelsize = new float3(-0.02e-10f, 0.02e-10f, 0.01e-10f), //Pixeldelta = new float3(0.0f, 0.02e-10f, 0.01e-10f), //Pixelangle = new float3(0, 2 * (float)Math.PI, 1 * (float)Math.PI / 18), //Defocus = new float3((float)(MainWindow.Options.CTFZMin - StartParams.Defocus) * 1e-6f, // (float)(MainWindow.Options.CTFZMax - StartParams.Defocus) * 1e-6f, // 0.025e-6f), Defocus = new float3(-0.4e-6f, 0.4e-6f, 0.025e-6f), Defocusdelta = doastigmatism ? new float3(0, 0.8e-6f, 0.02e-6f) : new float3(0, 0, 0), Astigmatismangle = doastigmatism ? new float3(0, 2 * (float)Math.PI, 1 * (float)Math.PI / 18) : new float3(0, 0, 0), Phaseshift = MainWindow.Options.CTFDoPhase ? new float3(0, (float)Math.PI, 0.025f * (float)Math.PI) : new float3(0, 0, 0) }; CTFStruct ResultStruct = GPU.CTFFitMean(CTFMeanPolarTrimmed.GetDevice(Intent.Read), CTFCoordsPolarTrimmed.GetDevice(Intent.Read), CTFMeanPolarTrimmed.DimsSlice, StartParams.ToStruct(), FitParams, doastigmatism); CTF.FromStruct(ResultStruct); CTF.Defocus = Math.Max(CTF.Defocus, MainWindow.Options.CTFZMin); CTFMeanPolarTrimmed.Dispose(); UpdateRotationalAverage(true); // This doesn't have a nice background yet. UpdateBackgroundFit(); // Now get a reasonably nice background. UpdateRotationalAverage(true); // This time, with the nice background. UpdateBackgroundFit(); // Make the background even nicer! } #endregion /*for (int i = 0; i < PS1D.Length; i++) PS1D[i].Y -= SimulatedBackground.Interp(PS1D[i].X); SimulatedBackground = new Cubic1D(SimulatedBackground.Data.Select(v => new float2(v.X, 0f)).ToArray()); OnPropertyChanged("PS1D"); CTFSpectra.Dispose(); CTFMean.Dispose(); CTFCoordsCart.Dispose(); CTFCoordsPolarTrimmed.Dispose(); Simulated1D = GetSimulated1D(); CTFQuality = GetCTFQuality(); return;*/ // Do BFGS optimization of defocus, astigmatism and phase shift, // using 2D simulation for comparison #region BFGS bool[] CTFSpectraConsider = new bool[CTFSpectraGrid.Elements()]; for (int i = 0; i < CTFSpectraConsider.Length; i++) CTFSpectraConsider[i] = true; int NCTFSpectraConsider = CTFSpectraConsider.Length; GridCTF = new CubicGrid(GridCTF.Dimensions, (float)CTF.Defocus, (float)CTF.Defocus, Dimension.X); GridCTFPhase = new CubicGrid(GridCTFPhase.Dimensions, (float)CTF.PhaseShift, (float)CTF.PhaseShift, Dimension.X); for (int preciseFit = 2; preciseFit < 3; preciseFit++) { NFreq = (MaxFreqExclusive - MinFreqInclusive) * (preciseFit + 1) / 3; //if (preciseFit >= 2) // NFreq = MaxFreqExclusive - MinFreqInclusive; Image CTFSpectraPolarTrimmed = CTFSpectra.AsPolar((uint)MinFreqInclusive, (uint)(MinFreqInclusive + NFreq)); CTFSpectra.FreeDevice(); // This will only be needed again for the final PS1D. #region Create background and scale float[] CurrentScale = _SimulatedScale.Interp(PS1D.Select(p => p.X).ToArray()); Image CTFSpectraScale = new Image(new int3(NFreq, DimsRegion.X, 1)); float[] CTFSpectraScaleData = CTFSpectraScale.GetHost(Intent.Write)[0]; // Trim polar to relevant frequencies, and populate coordinates. Parallel.For(0, DimsRegion.X, y => { float Angle = ((float)y / DimsRegion.X + 0.5f) * (float)Math.PI; for (int x = 0; x < NFreq; x++) CTFSpectraScaleData[y * NFreq + x] = CurrentScale[x + MinFreqInclusive]; }); //CTFSpectraScale.WriteMRC("ctfspectrascale.mrc"); // Background is just 1 line since we're in polar. Image CurrentBackground = new Image(_SimulatedBackground.Interp(PS1D.Select(p => p.X).ToArray()).Skip(MinFreqInclusive).Take(NFreq).ToArray()); #endregion CTFSpectraPolarTrimmed.SubtractFromLines(CurrentBackground); CurrentBackground.Dispose(); // Normalize background-subtracted spectra. GPU.Normalize(CTFSpectraPolarTrimmed.GetDevice(Intent.Read), CTFSpectraPolarTrimmed.GetDevice(Intent.Write), (uint)CTFSpectraPolarTrimmed.ElementsSliceReal, (uint)CTFSpectraGrid.Elements()); //CTFSpectraPolarTrimmed.WriteMRC("ctfspectrapolartrimmed.mrc"); #region Convert to fp16 Image CTFSpectraPolarTrimmedHalf = CTFSpectraPolarTrimmed.AsHalf(); CTFSpectraPolarTrimmed.Dispose(); Image CTFSpectraScaleHalf = CTFSpectraScale.AsHalf(); CTFSpectraScale.Dispose(); Image CTFCoordsPolarTrimmedHalf = CTFCoordsPolarTrimmed.AsHalf(); #endregion // Wiggle weights show how the defocus on the spectra grid is altered // by changes in individual anchor points of the spline grid. // They are used later to compute the dScore/dDefocus values for each spectrum // only once, and derive the values for each anchor point from them. float[][] WiggleWeights = GridCTF.GetWiggleWeights(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 1f / (CTFGridZ + 1))); float[][] WiggleWeightsPhase = GridCTFPhase.GetWiggleWeights(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, 1f / (CTFGridZ + 1))); // Helper method for getting CTFStructs for the entire spectra grid. Func<double[], CTF, float[], float[], CTFStruct[]> EvalGetCTF = (input, ctf, defocusValues, phaseValues) => { decimal AlteredDelta = (decimal)input[input.Length - 2]; decimal AlteredAngle = (decimal)(input[input.Length - 1] * 20 / (Math.PI / 180)); CTF Local = ctf.GetCopy(); Local.DefocusDelta = AlteredDelta; Local.DefocusAngle = AlteredAngle; CTFStruct LocalStruct = Local.ToStruct(); CTFStruct[] LocalParams = new CTFStruct[defocusValues.Length]; for (int i = 0; i < LocalParams.Length; i++) { LocalParams[i] = LocalStruct; LocalParams[i].Defocus = defocusValues[i] * -1e-6f; LocalParams[i].PhaseShift = phaseValues[i] * (float)Math.PI; } return LocalParams; }; // Simulate with adjusted CTF, compare to originals #region Eval and Gradient methods float BorderZ = 0.5f / CTFGridZ; Func<double[], double> Eval = input => { CubicGrid Altered = new CubicGrid(GridCTF.Dimensions, input.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] DefocusValues = Altered.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CubicGrid AlteredPhase = new CubicGrid(GridCTFPhase.Dimensions, input.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] PhaseValues = AlteredPhase.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); float[] Result = new float[LocalParams.Length]; GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, Result, (uint)LocalParams.Length); float Score = 0; for (int i = 0; i < Result.Length; i++) if (CTFSpectraConsider[i]) Score += Result[i]; Score /= NCTFSpectraConsider; if (float.IsNaN(Score) || float.IsInfinity(Score)) throw new Exception("Bad score."); return (1.0 - Score) * 1000.0; }; Func<double[], double[]> Gradient = input => { const float Step = 0.005f; double[] Result = new double[input.Length]; // In 0D grid case, just get gradient for all 4 parameters. // In 1+D grid case, do simple gradient for astigmatism and phase... int StartComponent = input.Length - 2; //int StartComponent = 0; for (int i = StartComponent; i < input.Length; i++) { double[] UpperInput = new double[input.Length]; input.CopyTo(UpperInput, 0); UpperInput[i] += Step; double UpperValue = Eval(UpperInput); double[] LowerInput = new double[input.Length]; input.CopyTo(LowerInput, 0); LowerInput[i] -= Step; double LowerValue = Eval(LowerInput); Result[i] = (UpperValue - LowerValue) / (2f * Step); } float[] ResultPlus = new float[CTFSpectraGrid.Elements()]; float[] ResultMinus = new float[CTFSpectraGrid.Elements()]; // ..., take shortcut for defoci... { CubicGrid AlteredPhase = new CubicGrid(GridCTFPhase.Dimensions, input.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] PhaseValues = AlteredPhase.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); { CubicGrid AlteredPlus = new CubicGrid(GridCTF.Dimensions, input.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v + Step).ToArray()); float[] DefocusValues = AlteredPlus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultPlus, (uint)LocalParams.Length); } { CubicGrid AlteredMinus = new CubicGrid(GridCTF.Dimensions, input.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v - Step).ToArray()); float[] DefocusValues = AlteredMinus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultMinus, (uint)LocalParams.Length); } float[] LocalGradients = new float[ResultPlus.Length]; for (int i = 0; i < LocalGradients.Length; i++) LocalGradients[i] = ResultMinus[i] - ResultPlus[i]; // Now compute gradients per grid anchor point using the precomputed individual gradients and wiggle factors. Parallel.For(0, GridCTF.Dimensions.Elements(), i => Result[i] = MathHelper.ReduceWeighted(LocalGradients, WiggleWeights[i]) / LocalGradients.Length / (2f * Step) * 1000f); } // ..., and take shortcut for phases. if (MainWindow.Options.CTFDoPhase) { CubicGrid AlteredPlus = new CubicGrid(GridCTF.Dimensions, input.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] DefocusValues = AlteredPlus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); { CubicGrid AlteredPhasePlus = new CubicGrid(GridCTFPhase.Dimensions, input.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v + Step).ToArray()); float[] PhaseValues = AlteredPhasePlus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultPlus, (uint)LocalParams.Length); } { CubicGrid AlteredPhaseMinus = new CubicGrid(GridCTFPhase.Dimensions, input.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v - Step).ToArray()); float[] PhaseValues = AlteredPhaseMinus.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(input, CTF, DefocusValues, PhaseValues); GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, ResultMinus, (uint)LocalParams.Length); } float[] LocalGradients = new float[ResultPlus.Length]; for (int i = 0; i < LocalGradients.Length; i++) LocalGradients[i] = ResultMinus[i] - ResultPlus[i]; // Now compute gradients per grid anchor point using the precomputed individual gradients and wiggle factors. Parallel.For(0, GridCTFPhase.Dimensions.Elements(), i => Result[i + GridCTF.Dimensions.Elements()] = MathHelper.ReduceWeighted(LocalGradients, WiggleWeightsPhase[i]) / LocalGradients.Length / (2f * Step) * 1000f); } foreach (var i in Result) if (double.IsNaN(i) || double.IsInfinity(i)) throw new Exception("Bad score."); return Result; }; #endregion #region Minimize first time with potential outpiers double[] StartParams = new double[GridCTF.Dimensions.Elements() + GridCTFPhase.Dimensions.Elements() + 2]; for (int i = 0; i < GridCTF.Dimensions.Elements(); i++) StartParams[i] = GridCTF.FlatValues[i]; for (int i = 0; i < GridCTFPhase.Dimensions.Elements(); i++) StartParams[i + GridCTF.Dimensions.Elements()] = GridCTFPhase.FlatValues[i]; StartParams[StartParams.Length - 2] = (double)CTF.DefocusDelta; StartParams[StartParams.Length - 1] = (double)CTF.DefocusAngle / 20 * (Math.PI / 180); // Compute correlation for individual spectra, and throw away those that are >.75 sigma worse than mean. #region Discard outliers if (CTFSpace || CTFTime) { CubicGrid Altered = new CubicGrid(GridCTF.Dimensions, StartParams.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] DefocusValues = Altered.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CubicGrid AlteredPhase = new CubicGrid(GridCTFPhase.Dimensions, StartParams.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v).ToArray()); float[] PhaseValues = AlteredPhase.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = EvalGetCTF(StartParams, CTF, DefocusValues, PhaseValues); float[] Result = new float[LocalParams.Length]; GPU.CTFCompareToSim(CTFSpectraPolarTrimmedHalf.GetDevice(Intent.Read), CTFCoordsPolarTrimmedHalf.GetDevice(Intent.Read), CTFSpectraScaleHalf.GetDevice(Intent.Read), (uint)CTFSpectraPolarTrimmedHalf.ElementsSliceReal, LocalParams, Result, (uint)LocalParams.Length); float MeanResult = MathHelper.Mean(Result); float StdResult = MathHelper.StdDev(Result); CTFSpectraConsider = new bool[CTFSpectraGrid.Elements()]; Parallel.For(0, CTFSpectraConsider.Length, i => { //if (Result[i] > MeanResult - StdResult * 1.5f) CTFSpectraConsider[i] = true; /*else { CTFSpectraConsider[i] = false; for (int j = 0; j < WiggleWeights.Length; j++) // Make sure the spectrum's gradient doesn't affect the overall gradient. WiggleWeights[j][i] = 0; }*/ }); NCTFSpectraConsider = CTFSpectraConsider.Where(v => v).Count(); } #endregion BroydenFletcherGoldfarbShanno Optimizer = new BroydenFletcherGoldfarbShanno(StartParams.Length, Eval, Gradient) { Past = 1, Delta = 1e-6, MaxLineSearch = 15, Corrections = 20 }; Optimizer.Minimize(StartParams); #endregion #region Retrieve parameters CTF.Defocus = (decimal)MathHelper.Mean(Optimizer.Solution.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v)); CTF.DefocusDelta = (decimal)Optimizer.Solution[StartParams.Length - 2]; CTF.DefocusAngle = (decimal)(Optimizer.Solution[StartParams.Length - 1] * 20 / (Math.PI / 180)); CTF.PhaseShift = (decimal)MathHelper.Mean(Optimizer.Solution.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v)); if (CTF.DefocusDelta < 0) { CTF.DefocusAngle += 90; CTF.DefocusDelta *= -1; } CTF.DefocusAngle = ((int)CTF.DefocusAngle + 180 * 99) % 180; GridCTF = new CubicGrid(GridCTF.Dimensions, Optimizer.Solution.Take((int)GridCTF.Dimensions.Elements()).Select(v => (float)v).ToArray()); GridCTFPhase = new CubicGrid(GridCTFPhase.Dimensions, Optimizer.Solution.Skip((int)GridCTF.Dimensions.Elements()).Take((int)GridCTFPhase.Dimensions.Elements()).Select(v => (float)v).ToArray()); #endregion // Dispose GPU resources manually because GC can't be bothered to do it in time. CTFSpectraPolarTrimmedHalf.Dispose(); CTFCoordsPolarTrimmedHalf.Dispose(); CTFSpectraScaleHalf.Dispose(); #region Get nicer envelope fit if (preciseFit >= 2) { if (!CTFSpace && !CTFTime) { UpdateRotationalAverage(true); } else { Image CTFSpectraBackground = new Image(new int3(DimsRegion), true); float[] CTFSpectraBackgroundData = CTFSpectraBackground.GetHost(Intent.Write)[0]; // Construct background in Cartesian coordinates. Helper.ForEachElementFT(DimsRegion, (x, y, xx, yy, r, a) => { CTFSpectraBackgroundData[y * CTFSpectraBackground.DimsEffective.X + x] = _SimulatedBackground.Interp(r / DimsRegion.X); }); CTFSpectra.SubtractFromSlices(CTFSpectraBackground); float[] DefocusValues = GridCTF.GetInterpolatedNative(CTFSpectraGrid, new float3(DimsRegion.X / 2f / DimsImage.X, DimsRegion.Y / 2f / DimsImage.Y, BorderZ)); CTFStruct[] LocalParams = DefocusValues.Select(v => { CTF Local = CTF.GetCopy(); Local.Defocus = (decimal)v + 0.0M; return Local.ToStruct(); }).ToArray(); Image CTFAverage1D = new Image(IntPtr.Zero, new int3(DimsRegion.X / 2, 1, 1)); CTF CTFAug = CTF.GetCopy(); CTFAug.Defocus += 0.0M; GPU.CTFMakeAverage(CTFSpectra.GetDevice(Intent.Read), CTFCoordsCart.GetDevice(Intent.Read), (uint)CTFSpectra.ElementsSliceReal, (uint)DimsRegion.X, LocalParams, CTFAug.ToStruct(), 0, (uint)DimsRegion.X / 2, CTFSpectraConsider.Select(v => v ? 1 : 0).ToArray(), (uint)CTFSpectraGrid.Elements(), CTFAverage1D.GetDevice(Intent.Write)); CTFSpectra.AddToSlices(CTFSpectraBackground); float[] RotationalAverageData = CTFAverage1D.GetHost(Intent.Read)[0]; float2[] ForPS1D = new float2[PS1D.Length]; for (int i = 0; i < ForPS1D.Length; i++) ForPS1D[i] = new float2((float)i / DimsRegion.X, (float)Math.Round(RotationalAverageData[i], 4) + _SimulatedBackground.Interp((float)i / DimsRegion.X)); MathHelper.UnNaN(ForPS1D); _PS1D = ForPS1D; CTFSpectraBackground.Dispose(); CTFAverage1D.Dispose(); CTFSpectra.FreeDevice(); } CTF.Defocus = Math.Max(CTF.Defocus, MainWindow.Options.CTFZMin); UpdateBackgroundFit(); } #endregion } #endregion // Subtract background from 2D average and write it to disk. // This image is used for quick visualization purposes only. #region PS2D update { int3 DimsAverage = new int3(DimsRegion.X, DimsRegion.X / 2, 1); float[] Average2DData = new float[DimsAverage.Elements()]; float[] OriginalAverageData = CTFMean.GetHost(Intent.Read)[0]; for (int y = 0; y < DimsAverage.Y; y++) { int yy = y * y; for (int x = 0; x < DimsAverage.Y; x++) { int xx = DimsRegion.X / 2 - x - 1; xx *= xx; float r = (float)Math.Sqrt(xx + yy) / DimsRegion.X; Average2DData[y * DimsAverage.X + x] = OriginalAverageData[(y + DimsRegion.X / 2) * (DimsRegion.X / 2 + 1) + x] - SimulatedBackground.Interp(r); } for (int x = 0; x < DimsRegion.X / 2; x++) { int xx = x * x; float r = (float)Math.Sqrt(xx + yy) / DimsRegion.X; Average2DData[y * DimsAverage.X + x + DimsRegion.X / 2] = OriginalAverageData[(DimsRegion.X / 2 - y) * (DimsRegion.X / 2 + 1) + (DimsRegion.X / 2 - 1 - x)] - SimulatedBackground.Interp(r); } } IOHelper.WriteMapFloat(PowerSpectrumPath, new HeaderMRC { Dimensions = DimsAverage, MinValue = MathHelper.Min(Average2DData), MaxValue = MathHelper.Max(Average2DData) }, Average2DData); PS2DTemp = null; OnPropertyChanged("PS2D"); } #endregion for (int i = 0; i < PS1D.Length; i++) PS1D[i].Y -= SimulatedBackground.Interp(PS1D[i].X); SimulatedBackground = new Cubic1D(SimulatedBackground.Data.Select(v => new float2(v.X, 0f)).ToArray()); OnPropertyChanged("PS1D"); CTFSpectra.Dispose(); CTFMean.Dispose(); CTFCoordsCart.Dispose(); CTFCoordsPolarTrimmed.Dispose(); Simulated1D = GetSimulated1D(); CTFQuality = GetCTFQuality(); SaveMeta(); }