Esempio n. 1
0
        /// <summary>
        /// Generate an encryption Key pair
        /// </summary>
        ///
        /// <returns>A McElieceKeyPair containing public and private keys</returns>
        public IAsymmetricKeyPair GenerateKeyPair()
        {
            // finite field GF(2^m)
            GF2mField field = new GF2mField(_M, _fieldPoly);
            // irreducible Goppa polynomial
            PolynomialGF2mSmallM gp   = new PolynomialGF2mSmallM(field, _T, PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL, _rndEngine);
            PolynomialRingGF2m   ring = new PolynomialRingGF2m(field, gp);

            // matrix for computing square roots in (GF(2^m))^t
            PolynomialGF2mSmallM[] qInv = ring.SquareRootMatrix;
            // generate canonical check matrix
            GF2Matrix h = GoppaCode.CreateCanonicalCheckMatrix(field, gp);

            // compute short systematic form of check matrix
            GoppaCode.MaMaPe mmp    = GoppaCode.ComputeSystematicForm(h, _rndEngine);
            GF2Matrix        shortH = mmp.SecondMatrix;
            Permutation      p      = mmp.Permutation;
            // compute short systematic form of generator matrix
            GF2Matrix shortG = (GF2Matrix)shortH.ComputeTranspose();
            // obtain number of rows of G (= dimension of the code)
            int k = shortG.RowCount;
            // generate keys
            IAsymmetricKey pubKey  = new MPKCPublicKey(_N, _T, shortG);
            IAsymmetricKey privKey = new MPKCPrivateKey(_N, k, field, gp, p, h, qInv);

            // return key pair
            return(new MPKCKeyPair(pubKey, privKey));
        }
Esempio n. 2
0
        /// <summary>
        /// Decides whether the given object <c>other</c> is the same as this field
        /// </summary>
        ///
        /// <param name="Obj">The object for comparison</param>
        ///
        /// <returns>Returns <c>(this == other)</c></returns>
        public override bool Equals(Object Obj)
        {
            if (Obj == null || !(Obj is MPKCPrivateKey))
            {
                return(false);
            }

            MPKCPrivateKey key = (MPKCPrivateKey)Obj;


            if (!N.Equals(key.N))
            {
                return(false);
            }
            if (!K.Equals(key.K))
            {
                return(false);
            }
            if (!GF.Equals(key.GF))
            {
                return(false);
            }
            if (!GP.Equals(key.GP))
            {
                return(false);
            }
            if (!P1.Equals(key.P1))
            {
                return(false);
            }
            if (!H.Equals(key.H))
            {
                return(false);
            }
            if (QInv.Length != key.QInv.Length)
            {
                return(false);
            }

            for (int i = 0; i < QInv.Length; i++)
            {
                if (!QInv[i].Equals(key.QInv[i]))
                {
                    return(false);
                }
            }

            return(true);
        }
        /// <summary>
        /// Generate an encryption Key pair
        /// </summary>
        /// 
        /// <returns>A McElieceKeyPair containing public and private keys</returns>
        public IAsymmetricKeyPair GenerateKeyPair()
        {
            // finite field GF(2^m)
            GF2mField field = new GF2mField(_M, _fieldPoly);
            // irreducible Goppa polynomial
            PolynomialGF2mSmallM gp = new PolynomialGF2mSmallM(field, _T, PolynomialGF2mSmallM.RANDOM_IRREDUCIBLE_POLYNOMIAL, _rndEngine);
            PolynomialRingGF2m ring = new PolynomialRingGF2m(field, gp);
            // matrix for computing square roots in (GF(2^m))^t
            PolynomialGF2mSmallM[] qInv = ring.SquareRootMatrix;
            // generate canonical check matrix
            GF2Matrix h = GoppaCode.CreateCanonicalCheckMatrix(field, gp);
            // compute short systematic form of check matrix
            GoppaCode.MaMaPe mmp = GoppaCode.ComputeSystematicForm(h, _rndEngine);
            GF2Matrix shortH = mmp.SecondMatrix;
            Permutation p = mmp.Permutation;
            // compute short systematic form of generator matrix
            GF2Matrix shortG = (GF2Matrix)shortH.ComputeTranspose();
            // obtain number of rows of G (= dimension of the code)
            int k = shortG.RowCount;
            // generate keys
            IAsymmetricKey pubKey = new MPKCPublicKey(_N, _T, shortG);
            IAsymmetricKey privKey = new MPKCPrivateKey(_N, k, field, gp, p, h, qInv);

            // return key pair
            return new MPKCKeyPair(pubKey, privKey);
        }
        private void TestEncode()
        {
            MPKCParameters mpar = (MPKCParameters)MPKCParamSets.MPKCFM11T40S256.DeepCopy();
            MPKCKeyGenerator mkgen = new MPKCKeyGenerator(mpar);
            IAsymmetricKeyPair akp = mkgen.GenerateKeyPair();

            MPKCPublicKey pub = (MPKCPublicKey)akp.PublicKey;
            byte[] enc = pub.ToBytes();
            using (MPKCPublicKey pub2 = MPKCPublicKey.From(enc))
            {
                if (!pub.Equals(pub2))
                    throw new Exception("EncryptionKey: public key comparison test failed!");
            }
            OnProgress(new TestEventArgs("Passed public key serialization"));

            MemoryStream pubstr = pub.ToStream();
            using (MPKCPublicKey pub2 = MPKCPublicKey.From(pubstr))
            {
                if (!pub.Equals(pub2))
                    throw new Exception("EncryptionKey: public key comparison test failed!");
            }
            pubstr.Dispose();
            OnProgress(new TestEventArgs("Passed public key stream test"));

            MPKCPrivateKey pri = (MPKCPrivateKey)akp.PrivateKey;
            enc = pri.ToBytes();
            using (MPKCPrivateKey pri2 = new MPKCPrivateKey(enc))
            {
                if (!pri.Equals(pri2))
                    throw new Exception("EncryptionKey: private key comparison test failed!");
            }
            OnProgress(new TestEventArgs("Passed private key serialization"));

            MemoryStream pristr = pri.ToStream();
            using (MPKCPrivateKey pri2 = MPKCPrivateKey.From(pristr))
            {
                if (!pri.Equals(pri2))
                    throw new Exception("EncryptionKey: private key comparison test failed!");
            }
            pristr.Dispose();
            OnProgress(new TestEventArgs("Passed private key stream test"));

            using (MPKCEncrypt mpe = new MPKCEncrypt(mpar))
            {
                mpe.Initialize(akp.PublicKey);

                int sz = mpe.MaxPlainText - 1;
                byte[] data = new byte[sz];
                new VTDev.Libraries.CEXEngine.Crypto.Prng.CSPRng().GetBytes(data);

                enc = mpe.Encrypt(data);

                mpe.Initialize(akp.PrivateKey);
                byte[] dec = mpe.Decrypt(enc);

                if (!Compare.AreEqual(dec, data))
                    throw new Exception("EncryptionKey: decryption failure!");
                OnProgress(new TestEventArgs("Passed encryption test"));
            }

            pri.Dispose();
            pub.Dispose();
        }