internal static Tensor Permute(Tensor inTensor, int[] permutations) // TODO: unify Permute() arguments
        {
            var padPermutationsToBarracudaRank = TensorShape.MaxRank - permutations.Length;

            if (padPermutationsToBarracudaRank > 0)
            {
                permutations = permutations.Concat(Enumerable.Range(permutations.Length, padPermutationsToBarracudaRank)).ToArray();
            }
            Debug.Assert(permutations.Length == TensorShape.MaxRank);

            // See: https://stackoverflow.com/a/32034565
            Profiler.BeginSample("ONNXTensor.Permute");
            var outTensor = new Tensor(ONNXLayout.Permute(inTensor.shape.ToArray(), permutations));

            Debug.Assert(outTensor.length == inTensor.length);

            // {0, 2, 3, 1} => {0, 3, 1, 2}
            // {2, 3, 1, 0} => {3, 2, 0, 1}
            //              => {find_index(0), find_index(1), find_index(2), find_index(3)}
            var reversePermute = new int[permutations.Length];

            for (var i = 0; i < permutations.Length; ++i)
            {
                reversePermute[i] = Array.IndexOf(permutations, i);
            }

            // outTensor strides
            var tempOutStrides = new int[TensorShape.MaxRank + 1];

            tempOutStrides[8] = 1;
            for (int i = 7; i >= 0; --i)
            {
                tempOutStrides[i] = tempOutStrides[i + 1] * outTensor.shape[i];
            }

            var outStride = new int[reversePermute.Length];

            for (var i = 0; i < reversePermute.Length; ++i)
            {
                outStride[i] = tempOutStrides[reversePermute[i] + 1];
            }

            // inTensor strides
            var inStrides = new int[TensorShape.MaxRank];

            inStrides[7] = 1;
            for (int i = 6; i >= 0; --i)
            {
                inStrides[i] = inStrides[i + 1] * inTensor.shape[i + 1];
            }

            for (var it = new TensorIterator(inTensor.shape); it.IsValid(); ++it)
            {
                outTensor[it.d0 * outStride[0] + it.d1 * outStride[1] + it.d2 * outStride[2] + it.d3 * outStride[3] + it.d4 * outStride[4] + it.d5 * outStride[5] + it.d6 * outStride[6] + it.d7 * outStride[7]] = inTensor[
                    it.d0 * inStrides[0] + it.d1 * inStrides[1] + it.d2 * inStrides[2] + it.d3 * inStrides[3] + it.d4 * inStrides[4] + it.d5 * inStrides[5] + it.d6 * inStrides[6] + it.d7 * inStrides[7]];
            }

            Profiler.EndSample();
            return(outTensor);
        }
Esempio n. 2
0
        public void AddVariable(string nodeId, long[] onnxShape, string onnxLayout)
        {
            var onnxRank              = onnxShape.Length;
            var permuatations         = ONNXLayout.AxisPermutationsForMappingONNXLayoutToBarracuda(onnxRank, onnxLayout);
            var barracudaChannelIndex = permuatations.Length - 1;
            var onnxChannelIndex      = permuatations[barracudaChannelIndex];
            var channels              = (onnxLayout != "?" && onnxChannelIndex >= 0) ? (int)onnxShape[onnxChannelIndex]: -1;
            var layout = VariableTensor.Layout.Unknown;

            if (onnxLayout == "NCHW")
            {
                layout = VariableTensor.Layout.NCHW;
            }
            else if (onnxLayout == "NHWC")
            {
                layout = VariableTensor.Layout.NHWC;
            }

            variables[nodeId] = new VariableTensor {
                features       = channels,
                rank           = onnxRank,
                layout         = layout,
                productOfShape = null
            };
        }
Esempio n. 3
0
        public ONNXTensor Permute(int[] permutations)
        {
            // transpose both data & shape
            var transposedData  = Permute(m_Data, permutations);
            var transposedShape = ONNXLayout.Permute(m_Shape, permutations);

            return(new ONNXTensor(transposedData, transposedShape));
        }
Esempio n. 4
0
        // slow version - kept just for performance comparison and validation
        internal static Tensor PermuteSlow(Tensor readTensor, int[] permutations) // TODO: unify Permute() arguments
        {
            var padPermutationsToBarracudaRank = 8 - permutations.Length;

            if (padPermutationsToBarracudaRank > 0)
            {
                permutations = permutations.Concat(Enumerable.Range(permutations.Length, padPermutationsToBarracudaRank)).ToArray();
            }
            Assert.IsTrue(permutations.Length == 8);

            var outputTensor = new Tensor(ONNXLayout.Permute(readTensor.shape.ToArray(), permutations));

            Assert.IsTrue(outputTensor.length == readTensor.length);

            var inShape = readTensor.shape.ToArray();

            for (var s = 0; s < inShape[0]; ++s)
            {
                for (var n = 0; n < inShape[1]; ++n)
                {
                    for (var i0 = 0; i0 < inShape[2]; ++i0)
                    {
                        for (var i1 = 0; i1 < inShape[3]; ++i1)
                        {
                            for (var i2 = 0; i2 < inShape[4]; ++i2)
                            {
                                for (var h = 0; h < inShape[5]; ++h)
                                {
                                    for (var w = 0; w < inShape[6]; ++w)
                                    {
                                        for (var c = 0; c < inShape[7]; ++c)
                                        {
                                            var it  = new int[] { 0, s, n, i0, i1, i2, h, w, c }; // prepend with 0 to handle "new axis" -1 value in permutations
                                            var oS  = it[permutations[0] + 1];
                                            var oN  = it[permutations[1] + 1];
                                            var oI0 = it[permutations[2] + 1];
                                            var oI1 = it[permutations[3] + 1];
                                            var oI2 = it[permutations[4] + 1];
                                            var oH  = it[permutations[5] + 1];
                                            var oW  = it[permutations[6] + 1];
                                            var oC  = it[permutations[7] + 1];
                                            outputTensor[oS, oN, oI0, oI1, oI2, oH, oW, oC] = readTensor[s, n, i0, i1, i2, h, w, c];
                                        }
                                    }
                                }
                            }
                        }
                    }
                }
            }

            return(outputTensor);
        }
Esempio n. 5
0
        public ONNXTensor Reshape(int[] onnxShape)
        {
            var symbolicShape = ONNXLayout.ConvertSymbolicShapeToBarracuda(onnxShape, "?");
            var reshapedData  = m_Data.Reshape(symbolicShape);

            for (var i = 0; i < onnxShape.Length; ++i)
            {
                if (onnxShape[i] < 0)
                {
                    onnxShape[i] = reshapedData.shape[i];
                }
                Assert.IsTrue(onnxShape[i] == reshapedData.shape[i]);
            }
            return(new ONNXTensor(reshapedData, onnxShape));
        }
Esempio n. 6
0
        public Tensor ToBarracuda(string onnxLayout)
        {
            Profiler.BeginSample("ONNXTensor.ToBarracuda");
            if (onnxLayout == "?")
            {
                throw new OnnxLayerImportException("Unknown ONNX layout in not supported when converting constant tensor to Barracuda");
            }

            Assert.IsTrue(m_Shape.All(v => v > 0));
            var permutations = ONNXLayout.AxisPermutationsForMappingONNXLayoutToBarracuda(rank, onnxLayout);

            Assert.IsTrue(rank <= permutations.Length);

            var outTensor = Permute(m_Data, permutations);

            Profiler.EndSample();
            return(outTensor);
        }
Esempio n. 7
0
        public ONNXTensor(TensorProto onnxTensor)
        {
            // read shape
            var onnxShape = onnxTensor.Dims.Select(v => v <int.MinValue?int.MinValue : v> int.MaxValue ? int.MaxValue : (int)v).ToArray();

            if (onnxShape.Any(s => s == 0))
            {
                // empty tensor, not data
                m_Shape = onnxShape;
                m_Data  = null;
            }
            else
            {
                // read data
                var     shape = ONNXLayout.ConvertShapeToBarracuda(onnxShape, onnxLayout: "?");
                float[] data;
                if ((onnxTensor.RawData != null) && (!onnxTensor.RawData.IsEmpty))
                {
                    var byteArray = new byte[onnxTensor.RawData.Length];
                    onnxTensor.RawData.CopyTo(byteArray, 0);

                    // Double
                    if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Double)
                    {
                        var typedData = new double[shape.length];
                        Assert.IsTrue((sizeof(double) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => v <int.MinValue?(float)int.MinValue : v> int.MaxValue ? (float)int.MaxValue : (float)v).ToArray();
                    }
                    // Float32
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Float)
                    {
                        data = new float[shape.length];
                        Assert.IsTrue((sizeof(float) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, data, 0, byteArray.Length);
                    }
                    // Float16
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Float16)
                    {
                        var typedData = new UInt16[shape.length];
                        Assert.IsTrue((sizeof(UInt16) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => HalfHelper.HalfToSingle(v)).ToArray();
                    }
                    // Int8
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Int8)
                    {
                        var typedData = new sbyte[shape.length];
                        Assert.IsTrue((sizeof(sbyte) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => (float)v).ToArray();
                    }
                    // Int16
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Int16)
                    {
                        var typedData = new short[shape.length];
                        Assert.IsTrue((sizeof(short) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => (float)v).ToArray();
                    }
                    // Int32
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Int32)
                    {
                        var typedData = new int[shape.length];
                        Assert.IsTrue((sizeof(int) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => (float)v).ToArray();
                    }
                    // Int64
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Int64)
                    {
                        var typedData = new long[shape.length];
                        Assert.IsTrue((sizeof(long) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => v <int.MinValue?(float)int.MinValue : v> int.MaxValue ? (float)int.MaxValue : (float)v).ToArray();
                    }
                    // UInt8
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Uint8)
                    {
                        var typedData = new byte[shape.length];
                        Assert.IsTrue((sizeof(byte) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => (float)v).ToArray();
                    }
                    // UInt16
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Uint16)
                    {
                        var typedData = new ushort[shape.length];
                        Assert.IsTrue((sizeof(ushort) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => (float)v).ToArray();
                    }
                    // UInt32
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Uint32)
                    {
                        var typedData = new uint[shape.length];
                        Assert.IsTrue((sizeof(uint) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => (float)v).ToArray();
                    }
                    // UInt64
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Uint64)
                    {
                        var typedData = new ulong[shape.length];
                        Assert.IsTrue((sizeof(ulong) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => v > uint.MaxValue ? (float)uint.MaxValue : (float)v).ToArray();
                    }
                    // Bool
                    else if (onnxTensor.DataType == (int)TensorProto.Types.DataType.Bool)
                    {
                        var typedData = new bool[shape.length];
                        Assert.IsTrue((sizeof(bool) * shape.length) == onnxTensor.RawData.Length);
                        Buffer.BlockCopy(byteArray, 0, typedData, 0, byteArray.Length);
                        data = typedData.Select(v => v ? 1.0f : 0.0f).ToArray();
                    }
                    else
                    {
                        throw new OnnxLayerImportException($"Tensor data type {(TensorProto.Types.DataType)onnxTensor.DataType} is not supported.");
                    }
                }
                // Float32
                else if ((onnxTensor.FloatData != null) && (onnxTensor.FloatData.Count != 0))
                {
                    Assert.IsTrue(shape.length == onnxTensor.FloatData.Count);
                    data = new float[shape.length];
                    onnxTensor.FloatData.CopyTo(data, 0);
                }
                // Int32
                else if ((onnxTensor.Int32Data != null) && (onnxTensor.Int32Data.Count != 0))
                {
                    Assert.IsTrue(shape.length == onnxTensor.Int32Data.Count);
                    data = onnxTensor.Int32Data.Select(v => (float)v).ToArray();
                }
                // Int64
                else if ((onnxTensor.Int64Data != null) && (onnxTensor.Int64Data.Count != 0))
                {
                    Assert.IsTrue(shape.length == onnxTensor.Int64Data.Count);
                    data = onnxTensor.Int64Data.Select(v => v <int.MinValue?(float)int.MinValue : v> int.MaxValue ? (float)int.MaxValue : (float)v).ToArray();
                }
                else
                {
                    throw new OnnxLayerImportException("Could not read tensor data for constant tensor.");
                }

                m_Data  = new Tensor(shape, new SharedArrayTensorData(data));
                m_Shape = onnxShape;
            }
        }