public static void Tensors_Constants() { var t1 = new tf.Tensor(3); var t2 = new tf.Tensor("Hello! Tensorflow.NET"); var nd = new NDArray(new int[] { 3, 1, 1, 2 }); var t3 = new tf.Tensor(nd); Console.WriteLine($"t1: {t1},\nt2: {t2},\nt3: {t3}\n"); var nd1 = new NDArray(new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 }); var tnd1 = new tf.Tensor(nd1); Console.WriteLine($"tnd1: {tnd1}"); var c1 = tf.constant_op.constant(3); var c2 = tf.constant_op.constant(1.0f); var c3 = tf.constant_op.constant(2.0); Console.WriteLine($"c1: {c1}\nc2: {c2}\nc3: {c3}"); var nd2 = np.array(new int[, ] { { 1, 2, 3 }, { 4, 5, 6 } }); var tensor = tf.constant_op.constant(nd2); print($"tensor: {tensor}"); }
/// <summary> /// Returns the index with the largest value across dimensions of a tensor. /// </summary> /// <param name="input"></param> /// <param name="dimension"></param> /// <param name="output_type"></param> /// <param name="name"></param> /// <returns></returns> public static Tensor arg_max(Tensor input, int dimension, TF_DataType output_type = TF_DataType.TF_INT64, string name = null) { var _op = _op_def_lib._apply_op_helper("ArgMax", name, new { input, dimension, output_type }); return(_op.outputs[0]); }
/// <summary> /// Creates a sequence of numbers. /// </summary> /// <param name="start"></param> /// <param name="limit"></param> /// <param name="delta"></param> /// <param name="name"></param> /// <returns></returns> public static Tensor range(Tensor start, Tensor limit, Tensor delta, string name = null) { var _op = _op_def_lib._apply_op_helper("Range", name, new { start, limit, delta }); return(_op.outputs[0]); }
/// <summary> /// Adds sparse updates to a variable reference. /// </summary> /// <param name="ref"></param> /// <param name="indices"></param> /// <param name="updates"></param> /// <param name="use_locking"></param> /// <param name="name"></param> /// <returns></returns> public static Tensor scatter_add(RefVariable @ref, Tensor indices, Tensor updates, bool use_locking = false, string name = null) { var _op = _op_def_lib._apply_op_helper("ScatterAdd", name: name, args: new { @ref, indices, updates, use_locking }); return(_op.outputs[0]); }
public static Tensor destroy_resource_op(Tensor resource, bool ignore_lookup_error = true, string name = null) => tf.Context.ExecuteOp("DestroyResourceOp", name, new ExecuteOpArgs(resource).SetAttributes(new { ignore_lookup_error }));
/// <summary> /// Standardize input `x` to a unit normal. /// </summary> /// <param name="x"></param> /// <returns></returns> private Tensor _z(Tensor x) { return(tf.divide(tf.sub(x, this._loc), this._scale)); }
public static int tensor_id(Tensor tensor) { return(tensor.Id); }
/// <summary> /// Returns which elements of x are finite. /// </summary> /// <param name="x"> A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`.</param> /// <param name="name"> A name for the operation (optional).</param> /// <returns> A `Tensor` of type `bool`.</returns> public static Tensor is_finite(Tensor x, string name = null) { var _op = _op_def_lib._apply_op_helper("IsFinite", name, args: new { x }); return(_op.outputs[0]); }
public static Tensor add(Tensor a, Tensor b) { return(gen_math_ops.add(a, b)); }
public static Tensor internal_convert_to_tensor_or_composite(Tensor value, TF_DataType dtype = TF_DataType.DtInvalid, string name = null, bool as_ref = false) { return(internal_convert_to_tensor(value, dtype: dtype, name: name, as_ref: as_ref)); }
public static Tensor pow(Tensor x, double y) { return(gen_math_ops.pow(x, y)); }
public static Tensor multiply(Tensor x, Tensor y) { return(gen_math_ops.mul(x, y)); }
public static Tensor sub(Tensor a, Tensor b) { return(gen_math_ops.sub(a, b)); }
public static Tensor add(Tensor x, Tensor y, string name = null) { var _op = _op_def_lib._apply_op_helper("Add", name, args: new { x, y }); return(_op.outputs[0]); }
public static Tensor size(Tensor input, string name = null, TF_DataType out_type = TF_DataType.TF_INT32) => array_ops.size(input, name, optimize: true, out_type: out_type);
public static Tensor squared_difference(Tensor x, Tensor y, string name = null) { var _op = _op_def_lib._apply_op_helper("SquaredDifference", name, args: new { x, y, name }); return(_op.outputs[0]); }
public static Tensor cast(Tensor x, TF_DataType DstT, bool Truncate = false, string name = "") { var _op = _op_def_lib._apply_op_helper("Cast", name, args: new { x, DstT, Truncate }); return(_op.outputs[0]); }
/// <summary> /// Computes natural logarithm of x element-wise. /// </summary> /// <param name="x"> A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `complex64`, `complex128`.</param> /// <param name="name"> name: A name for the operation (optional).</param> /// <returns> A `Tensor`. Has the same type as `x`.</returns> public static Tensor log(Tensor x, string name = null) { var _op = _op_def_lib._apply_op_helper("Log", name, args: new { x }); return(_op.outputs[0]); }
public static Tensor floor_div(Tensor x, Tensor y, string name = null) { var _op = _op_def_lib._apply_op_helper("FloorDiv", name, args: new { x, y }); return(_op.outputs[0]); }
/// <summary> /// Reads the value of a variable. /// </summary> /// <param name="resource"></param> /// <param name="dtype"></param> /// <param name="name"></param> /// <returns></returns> public static Tensor read_variable_op(Tensor resource, TF_DataType dtype, string name = null) => tf.Context.ExecuteOp("ReadVariableOp", name, new ExecuteOpArgs(resource) .SetAttributes(new { dtype }));
/// <summary> /// Multiply the matrix "a" by the matrix "b". /// </summary> /// <param name="a"></param> /// <param name="b"></param> /// <param name="transpose_a"></param> /// <param name="transpose_b"></param> /// <param name="name"></param> /// <returns></returns> public static Tensor mat_mul(Tensor a, Tensor b, bool transpose_a = false, bool transpose_b = false, string name = null) { var _op = _op_def_lib._apply_op_helper("MatMul", name, args: new { a, b, transpose_a, transpose_b }); return(_op.outputs[0]); }
private Tensor _log_unnormalized_prob(Tensor x) { return(-0.5 * math_ops.square(_z(x))); }
public static Tensor _sum(Tensor input, int axis, bool keep_dims = false, string name = null) { var _op = _op_def_lib._apply_op_helper("Sum", name, args: new { input, reduction_indices = axis, keep_dims }); return(_op.outputs[0]); }
internal NDArrayTensor Out(Tensorflow.Tensor x) { return new NDArrayTensor(x); }
public static Tensor reduce_logsumexp(Tensor input_tensor, int[] axis = null, bool keepdims = false, string name = null) => math_ops.reduce_logsumexp(input_tensor, axis, keepdims, name);