Esempio n. 1
0
        public void ToFlatten()
        {
            Shape shape = new Shape(2, 2, 2, 2);

            float[] data =
            {
                1,   2,
                3,   4,

                5,   6,
                7,   8,

                9,  10,
                11, 12,

                13, 14,
                15, 16
            };

            Tensor x = CreateTensor(shape, data);
            Tensor y = CreateTensor();

            x.ToFlatten(y);

            Assert.Equal(2, y.Batch);
            Assert.Equal(1, y.Channels);
            Assert.Equal(1, y.Height);
            Assert.Equal(8, y.Width);
            Assert.True(FloatComparison.AreEqual(data, y.Storage.Data));
        }
Esempio n. 2
0
        public void SoftmaxDx()
        {
            Shape yShape  = new Shape(2, 1, 1, 5);
            Shape dyShape = new Shape(2, 1, 1, 5);

            float[] yData =
            {
                1, 4.5f,    0, 2, 3.1f,
                0, 1.5f, 2.9f, 1, 0.2f
            };

            float[] dyData =
            {
                0.5f,     3, 0.4f,    1, 2.5f,
                0.01f, 1.5f,    0, 3.1f, 0.28f
            };

            float[] dxExp =
            {
                -23.25f, -93.375f,         0,  -45.5f, -65.875f,
                0,        -5.859f, -15.6774f, -2.306f, -1.0252f
            };

            Tensor dx = CreateTensor();
            Tensor y  = CreateTensor(yShape, yData);
            Tensor dy = CreateTensor(dyShape, dyData);

            y.SoftmaxDx(dy, dx);

            Assert.True(FloatComparison.AreEqual(dxExp, dx.Storage.Data));
        }
Esempio n. 3
0
        public void Pad()
        {
            Shape shape = new Shape(2, 2, 1, 1);

            float[] data =
            {
                0.2f,

                1,

                2.8f,

                3
            };
            float[] res = new float[36];
            res[4]  = 0.2f;
            res[13] = 1;
            res[22] = 2.8f;
            res[31] = 3;
            Tensor t    = CreateTensor(shape, data);
            Tensor tRes = CreateTensor();

            t.Pad(1, tRes);

            Assert.Equal(2, tRes.Batch);
            Assert.Equal(2, tRes.Channels);
            Assert.Equal(3, tRes.Height);
            Assert.Equal(3, tRes.Width);
            Assert.True(FloatComparison.AreEqual(res, tRes.Storage.Data));
        }
Esempio n. 4
0
        public void Transpose2D()
        {
            Shape shape = new Shape(1, 1, 2, 3);

            float[] data =
            {
                0.2f,    1, 2.8f,
                3,    4.1f, 5
            };

            float[] res =
            {
                0.2f,    3,
                1,    4.1f,
                2.8f, 5
            };
            Tensor t    = CreateTensor(shape, data);
            Tensor tRes = CreateTensor();

            t.Transpose2D(tRes);

            Assert.Equal(1, tRes.Batch);
            Assert.Equal(1, tRes.Channels);
            Assert.Equal(3, tRes.Height);
            Assert.Equal(2, tRes.Width);
            Assert.True(FloatComparison.AreEqual(res, tRes.Storage.Data));
        }
Esempio n. 5
0
        public void Fill()
        {
            Shape shape = new Shape(1, 2, 2, 2);

            float[] data =
            {
                0, 0,
                0, 0,

                0, 0,
                0, 0
            };

            float[] res =
            {
                3, 3,
                3, 3,

                3, 3,
                3, 3
            };

            Tensor t = CreateTensor(shape, data);

            t.Fill(3);

            Assert.True(FloatComparison.AreEqual(res, t.Storage.Data));
        }
Esempio n. 6
0
        public void MaxPool()
        {
            Shape shape = new Shape(2, 2, 3, 3);

            float[] data =
            {
                0.2f,    1, 2.8f,
                3,    4.1f,    5,
                1,    2.2f,    4,

                1.8f,    5,    8,
                2,    2.1f,    0,
                0.4f, 0.9f,    0,

                1,       0,    2,
                2.1f, 4.5f,    0,
                3,       8,    1,

                2,       3,    4,
                7,    7.2f, 0.1f,
                0,       0, 2
            };

            float[] res =
            {
                4.1f,    5,
                4.1f,    5,

                5,       8,
                2.1f, 2.1f,

                4.5f, 4.5f,
                8,       8,

                7.2f, 7.2f,
                7.2f, 7.2f
            };

            float[] maxInd =
            {
                4, 5, 4, 5, 10, 11, 13, 13, 22, 22, 25, 25, 31, 31, 31, 31
            };

            Tensor t       = CreateTensor(shape, data);
            Tensor tRes    = CreateTensor();
            Tensor tMaxInd = CreateTensor();

            t.MaxPool(2, 1, tRes, tMaxInd);

            Assert.Equal(2, tRes.Batch);
            Assert.Equal(2, tRes.Channels);
            Assert.Equal(2, tRes.Height);
            Assert.Equal(2, tRes.Width);
            Assert.True(FloatComparison.AreEqual(res, tRes.Storage.Data));
            Assert.True(FloatComparison.AreEqual(maxInd, tMaxInd.Storage.Data));
        }
Esempio n. 7
0
        public void FullyConnectedDx()
        {
            Shape xShape  = new Shape(2, 1, 1, 4);
            Shape dyShape = new Shape(2, 1, 1, 2);
            Shape wShape  = new Shape(1, 1, 4, 2);

            float[] wData =
            {
                0,    1.5f,
                2,    0.2f,
                5,    2.5f,
                0.1f, 4
            };

            float[] xData =
            {
                2, 1.5f, 0.1f, 0.25f,

                2, 1.5f, 0.1f, 0.25f
            };

            float[] dyData =
            {
                1, 2.5f,

                0, 1.2f
            };

            float[] dxExp =
            {
                3.75f, 2.5f, 11.25f,

                10.1f, 1.8f,  0.24f,3, 4.8f
            };

            Tensor x  = CreateTensor(xShape, xData);
            Tensor w  = CreateTensor(wShape, wData);
            Tensor dy = CreateTensor(dyShape, dyData);
            Tensor dx = CreateTensor();

            x.FullyConnectedDx(w, dy, CreateTensor(), dx);

            Assert.Equal(2, dx.Batch);
            Assert.Equal(1, dx.Channels);
            Assert.Equal(1, dx.Height);
            Assert.Equal(4, dx.Width);
            Assert.True(FloatComparison.AreEqual(dxExp, dx.Storage.Data));
        }
Esempio n. 8
0
        public void Im2Col()
        {
            Shape shape = new Shape(2, 2, 3, 3);

            float[] data =
            {
                //1st batch
                0.2f,    1, 2.8f,
                3,    4.1f,    5,
                1,    2.2f,    4,

                1.8f,    5,    8,
                2,    2.1f,    0,
                0.4f, 0.9f,    0,

                //2nd batch
                1,       0,    2,
                2.1f, 4.5f,    0,
                3,       8,    1,

                2,       3,    4,
                7,    7.2f, 0.1f,
                0,       0, 2
            };

            float[] res =
            {
                0.2f,    1,    3, 4.1f,    1,    0, 2.1f, 4.5f,
                1,    2.8f, 4.1f,    5,    0,    2, 4.5f,    0,
                3,    4.1f,    1, 2.2f, 2.1f, 4.5f,    3,    8,
                4.1f,    5, 2.2f,    4, 4.5f,    0,    8,    1,
                1.8f,    5,    2, 2.1f,    2,    3,    7, 7.2f,
                5,       8, 2.1f,    0,    3,    4, 7.2f, 0.1f,
                2,    2.1f, 0.4f, 0.9f,    7, 7.2f,    0,    0,
                2.1f,    0, 0.9f,    0, 7.2f, 0.1f,    0, 2
            };

            Tensor t    = CreateTensor(shape, data);
            Tensor tRes = CreateTensor();

            t.Im2Col(2, 2, 1, tRes);

            Assert.Equal(1, tRes.Batch);
            Assert.Equal(1, tRes.Channels);
            Assert.Equal(8, tRes.Height);
            Assert.Equal(8, tRes.Width);
            Assert.True(FloatComparison.AreEqual(res, tRes.Storage.Data));
        }
Esempio n. 9
0
        public void Rotate180()
        {
            Shape shape = new Shape(2, 2, 2, 2);

            float[] data =
            {
                0f,  1,
                2,   3,

                4,   5,
                6,   7,

                8,   9,
                10, 11,

                12, 13,
                14, 15
            };

            float[] res =
            {
                3f,  2,
                1,   0,

                7,   6,
                5,   4,

                11, 10,
                9,   8,

                15, 14,
                13, 12
            };

            Tensor t    = CreateTensor(shape, data);
            Tensor tRes = CreateTensor();

            t.Rotate180(tRes);

            Assert.Equal(2, tRes.Batch);
            Assert.Equal(2, tRes.Channels);
            Assert.Equal(2, tRes.Height);
            Assert.Equal(2, tRes.Width);
            Assert.True(FloatComparison.AreEqual(res, tRes.Storage.Data));
        }
Esempio n. 10
0
        public void MeanSquaredError()
        {
            var oData = new [] { 0.5f, 1, 2, 0.1f, 1.2f, 1.4f, 3, 1, 2.5f, 1.1f };
            var tData = new[] { 1, 0.2f, 2.3f, 0.3f, 2, 2, 0.5f, 1, 2.8f, 0.05f };

            var shape = new Shape(2, 1, 1, 5);

            var o    = CreateTensor(shape, oData);
            var t    = CreateTensor(shape, tData);
            var loss = CreateTensor();

            o.Loss(t, new MeanSquaredError(), loss);

            Assert.Equal(2, loss.Size);
            Assert.Equal(2, loss.Batch);
            Assert.True(FloatComparison.AreEqual(0.331f, loss[0]));
            Assert.True(FloatComparison.AreEqual(1.56f, loss[1]));
        }
Esempio n. 11
0
        public void CrossEntropy()
        {
            var oData = new [] { 0.5f, 1, 2, 0.1f, 1.2f, 1.4f, 3, 1, 2.5f, 1.1f };
            var tData = new[] { 1, 0.2f, 2.3f, 0.3f, 2, 2, 0.5f, 1, 2.8f, 0.05f };

            var shape = new Shape(2, 1, 1, 5);

            var o    = CreateTensor(shape, oData);
            var t    = CreateTensor(shape, tData);
            var loss = CreateTensor();

            o.Loss(t, new CrossEntropy(), loss);

            Assert.Equal(2, loss.Size);
            Assert.Equal(2, loss.Batch);
            Assert.True(FloatComparison.AreEqual(-0.575f, loss[0]));
            Assert.True(FloatComparison.AreEqual(-3.792f, loss[1]));
        }
Esempio n. 12
0
        public void Dot2D_ExplicitDimensions()
        {
            Shape shapeA = new Shape(3, 1, 1, 2);
            Shape shapeB = new Shape(1, 1, 2, 4);
            Shape shapeC = new Shape(3, 1, 1, 4);

            float[] dataA =
            {
                0.2f, 1,

                2.8f, 3,

                4.1f, 5
            };

            float[] dataB =
            {
                0.1f,    2, 3.5f, 6,
                4,    8.8f,    0, 3
            };

            float[] res =
            {
                4.02f,   9.2f,   0.7f,  4.2f,

                12.28f,    32,   9.8f, 25.8f,

                20.41f, 52.2f, 14.35f, 39.6f
            };

            Tensor a = CreateTensor(shapeA, dataA);
            Tensor b = CreateTensor(shapeB, dataB);
            Tensor c = CreateTensor();

            a.Dot2D(b, a.Batch, a.Width, b.Height, b.Width, shapeC, c);

            Assert.Equal(3, c.Batch);
            Assert.Equal(1, c.Channels);
            Assert.Equal(1, c.Height);
            Assert.Equal(4, c.Width);
            Assert.True(FloatComparison.AreEqual(res, c.Storage.Data));
        }
Esempio n. 13
0
        public void FlattenDx()
        {
            Shape dyShape = new Shape(1, 1, 1, 16);
            Shape xShape  = new Shape(2, 2, 2, 2);

            float[] dyData = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
            float[] xData  = new float[16];

            Tensor dy = CreateTensor(dyShape, dyData);
            Tensor x  = CreateTensor(xShape, xData);
            Tensor dx = CreateTensor();

            x.FlattenDx(dy, dx);

            Assert.Equal(2, dx.Batch);
            Assert.Equal(2, dx.Channels);
            Assert.Equal(2, dx.Height);
            Assert.Equal(2, dx.Width);
            Assert.True(FloatComparison.AreEqual(dyData, dx.Storage.Data));
        }
Esempio n. 14
0
        public void FullyConnectedDw()
        {
            Shape xShape  = new Shape(2, 1, 1, 4);
            Shape dyShape = new Shape(2, 1, 1, 2);

            float[] xData =
            {
                2, 1.5f, 0.1f, 0.25f,

                0, 3.5f, 7.1f, 3.29f
            };

            float[] dyData =
            {
                1, 2.5f,

                0, 1.2f
            };

            float[] dwExp =
            {
                2,         5,
                1.5f,  7.95f,
                0.1f,  8.77f,
                0.25f, 4.573f
            };
            Tensor x  = CreateTensor(xShape, xData);
            Tensor dy = CreateTensor(dyShape, dyData);
            Tensor dw = CreateTensor();

            x.FullyConnectedDw(dy, CreateTensor(), dw);

            Assert.Equal(1, dw.Batch);
            Assert.Equal(1, dw.Channels);
            Assert.Equal(4, dw.Height);
            Assert.Equal(2, dw.Width);
            Assert.True(FloatComparison.AreEqual(dwExp, dw.Storage.Data));
        }
Esempio n. 15
0
        public void Sum()
        {
            Shape shapeA = new Shape(1, 2, 2, 2);
            Shape shapeB = new Shape(1, 2, 2, 2);

            float[] dataA =
            {
                0.2f, 1,
                2.8f, 3,

                4.1f, 5,
                1, 2.2f
            };

            float[] dataB =
            {
                0.1f,    2,
                3.5f,    6,

                4,    8.8f,
                1.3f, 4.8f
            };

            float[] res =
            {
                0.3f,     3,
                6.3f,     9,

                8.1f, 13.8f,
                2.3f, 7
            };
            Tensor a = CreateTensor(shapeA, dataA);
            Tensor b = CreateTensor(shapeB, dataB);

            a.Sum(b);

            Assert.True(FloatComparison.AreEqual(res, a.Storage.Data));
        }
Esempio n. 16
0
        public void Col2Im()
        {
            var shape    = new Shape(1, 1, 2, 8);
            var outShape = new Shape(2, 2, 2, 2);

            float[] data =
            {
                4.1f, 5, 1.1f,     2, 5,    8, 2.1f, 2.1f,
                0.1f, 1, 3.5f, 0.05f, 5, 0.8f,    3, 0
            };

            float[] res =
            {
                4.1f,     5,
                1.1f,     2,

                0.1f,     1,
                3.5f, 0.05f,

                5,        8,
                2.1f,  2.1f,

                5,     0.8f,
                3, 0
            };

            var t    = CreateTensor(shape, data);
            var tRes = CreateTensor();

            t.Col2Im(outShape, tRes);

            Assert.Equal(2, tRes.Batch);
            Assert.Equal(2, tRes.Channels);
            Assert.Equal(2, tRes.Height);
            Assert.Equal(2, tRes.Width);
            Assert.True(FloatComparison.AreEqual(res, tRes.Storage.Data));
        }
Esempio n. 17
0
        public void MaxPoolDx()
        {
            Shape xShape      = new Shape(1, 2, 3, 3);
            Shape dyShape     = new Shape(1, 2, 2, 2);
            Shape maxIndShape = new Shape(1, 1, 1, 8);

            float[] x  = new float[18];
            float[] dy =
            {
                4.1f, 5,
                4.1f, 5,

                5,    8,
                2.1f, 2.1f
            };

            float[] maxInd = { 4, 5, 4, 5, 10, 11, 13, 13 };
            float[] dx     = new float[18];
            dx[4]  = 4.1f;
            dx[5]  = 5;
            dx[10] = 5;
            dx[11] = 8;
            dx[13] = 2.1f;

            Tensor xTensor   = CreateTensor(xShape, x);
            Tensor dyTensor  = CreateTensor(dyShape, dy);
            Tensor maxTensor = CreateTensor(maxIndShape, maxInd);
            Tensor dxTensor  = CreateTensor();

            xTensor.MaxPoolDx(dyTensor, maxTensor, dxTensor);

            Assert.Equal(1, dxTensor.Batch);
            Assert.Equal(2, dxTensor.Channels);
            Assert.Equal(3, dxTensor.Height);
            Assert.Equal(3, dxTensor.Width);
            Assert.True(FloatComparison.AreEqual(dx, dxTensor.Storage.Data));
        }
Esempio n. 18
0
        public void Softmax()
        {
            Shape shape = new Shape(2, 1, 1, 5);

            float[] xData =
            {
                1, 4.5f,    0,     2, 3.1f,
                0, 3.5f, 0.8f, 0.25f, 2.5f
            };

            float[] yExp =
            {
                0.022f,  0.7299f,   0.0081f,  0.0599f, 0.1799f,
                0.02f,  0.66486f, 0.044682f, 0.02577f, 0.24459f
            };

            Tensor x   = CreateTensor(shape, xData);
            Tensor y   = CreateTensor();
            Tensor max = CreateTensor();

            x.Softmax(y, max);

            Assert.True(FloatComparison.AreEqual(yExp, y.Storage.Data));
        }
Esempio n. 19
0
        public void ConvolutionDx()
        {
            Shape xShape  = new Shape(2, 2, 3, 3);
            Shape wShape  = new Shape(2, 2, 2, 2);
            Shape dyShape = new Shape(2, 2, 2, 2);

            float[] xData =
            {
                //1st batch
                0.2f,    1, 2.8f,
                3,    4.1f,    5,
                1,    2.2f,    4,

                1.8f,    5,    8,
                2,    2.1f,    0,
                0.4f, 0.9f,    0,

                //2nd batch
                1,       0,    2,
                2.1f, 4.5f,    0,
                3,       8,    1,

                2,       3,    4,
                7,    7.2f, 0.1f,
                0,       0, 2
            };

            float[] wData =
            {
                0.1f,    2,
                3.5f,    6,

                4,    8.8f,
                1.3f, 4.8f,

                1,       0,
                5,       0,

                0,    3.5f,
                4, 0.5f
            };

            float[] dyData =
            {
                10,   1.1f,
                6.5f, 1.6f,

                4.7f, 7.9f,
                7.4f, 8.7f,

                0,    1.9f,
                0.5f, 1.8f,

                4.7f,    1,
                7.7f, 0.7f
            };

            float[] dxExp =
            {
                5.7f,    28.01f,   2.2f,
                66.55f, 125.21f,   9.8f,
                59.75f,   88.1f,   9.6f,

                40f,    108.85f, 37.33f,
                57.8f,  172.88f, 53.76f,
                38.05f,  71.78f, 12.03f,

                4.7f,     1.19f,   3.8f,
                31.25f,  13.53f,    15f,
                40.25f,   12.8f,  10.8f,

                0f,      24.05f, 20.22f,
                20.8f,   47.37f, 27.91f,
                31.45f,  11.39f, 8.99f
            };

            var w  = CreateTensor(wShape, wData);
            var x  = CreateTensor(xShape, xData);
            var dy = CreateTensor(dyShape, dyData);
            var dx = CreateTensor();

            x.ConvolutionDx(w, dy, CreateTensor(), CreateTensor(), CreateTensor(), CreateTensor(), CreateTensor(), dx);

            Assert.Equal(2, dx.Batch);
            Assert.Equal(2, dx.Channels);
            Assert.Equal(3, dx.Height);
            Assert.Equal(3, dx.Width);
            Assert.True(FloatComparison.AreEqual(dxExp, dx.Storage.Data));
        }
Esempio n. 20
0
        public void Convolution()
        {
            Shape xShape = new Shape(2, 2, 3, 3);
            Shape wShape = new Shape(2, 2, 2, 2);

            float[] xData =
            {
                //1st batch
                0.2f,    1, 2.8f,
                3,    4.1f,    5,
                1,    2.2f,    4,

                1.8f,    5,    8,
                2,    2.1f,    0,
                0.4f, 0.9f,    0,

                //2nd batch
                1,       0,    2,
                2.1f, 4.5f,    0,
                3,       8,    1,

                2,       3,    4,
                7,    7.2f, 0.1f,
                0,       0, 2
            };

            float[] wData =
            {
                0.1f,    2,
                3.5f,    6,

                4,    8.8f,
                1.3f, 4.8f,

                1,       0,
                5,       0,

                0,    3.5f,
                4, 0.5f
            };

            float[] res =
            {
                101,     143.18f,
                56.52f,   51.68f,

                41.75f,    57.9f,
                17.4f,     18.7f,

                112.51f,  76.79f,
                159.07f,  73.73f,

                53.6f,    65.35f,
                42.3f, 45.85f
            };
            Tensor x = CreateTensor(xShape, xData);
            Tensor w = CreateTensor(wShape, wData);
            Tensor y = CreateTensor();

            Tensor im2ColBuffer = CreateTensor();
            Tensor dotBuffer    = CreateTensor();

            x.Convolution(w, 1, im2ColBuffer, dotBuffer, y);

            Assert.Equal(2, y.Batch);
            Assert.Equal(2, y.Channels);
            Assert.Equal(2, y.Height);
            Assert.Equal(2, y.Width);

            Assert.True(FloatComparison.AreEqual(res, y.Storage.Data));
        }
Esempio n. 21
0
        public void ConvolutionDw()
        {
            Shape xShape       = new Shape(2, 2, 3, 3);
            Shape im2ColXShape = new Shape(1, 1, 8, 8);
            Shape wShape       = new Shape(2, 2, 2, 2);
            Shape dyShape      = new Shape(2, 2, 2, 2);

            float[] xData =
            {
                //1st batch
                0.2f,    1, 2.8f,
                3,    4.1f,    5,
                1,    2.2f,    4,

                1.8f,    5,    8,
                2,    2.1f,    0,
                0.4f, 0.9f,    0,

                //2nd batch
                1,       0,    2,
                2.1f, 4.5f,    0,
                3,       8,    1,

                2,       3,    4,
                7,    7.2f, 0.1f,
                0,       0, 2
            };

            float[] im2ColXData =
            {
                0.2f,    1,    3, 4.1f,    1,    0, 2.1f, 4.5f,
                1,    2.8f, 4.1f,    5,    0,    2, 4.5f,    0,
                3,    4.1f,    1, 2.2f, 2.1f, 4.5f,    3,    8,
                4.1f,    5, 2.2f,    4, 4.5f,    0,    8,    1,
                1.8f,    5,    2, 2.1f,    2,    3,    7, 7.2f,
                5,       8, 2.1f,    0,    3,    4, 7.2f, 0.1f,
                2,    2.1f, 0.4f, 0.9f,    7, 7.2f,    0,    0,
                2.1f,    0, 0.9f,    0, 7.2f, 0.1f,    0, 2
            };

            float[] wData =
            {
                0.1f,    2,
                3.5f,    6,

                4,    8.8f,
                1.3f, 4.8f,

                1,       0,
                5,       0,

                0,    3.5f,
                4, 0.5f
            };

            float[] dyData =
            {
                10,   1.1f,
                6.5f, 1.6f,

                4.7f, 7.9f,
                7.4f, 8.7f,

                0,    1.9f,
                0.5f, 1.8f,

                4.7f,    1,
                7.7f, 0.7f
            };

            float[] dwExp =
            {
                38.31f,   53.78f,
                68.98f,      73f,

                62.02f,   83.83f,
                40.03f,   30.64f,

                90.73f,  137.31f,
                116.1f,   193.3f,

                152.37f, 175.85f,
                76.88f, 51.87f
            };

            Tensor x       = CreateTensor(xShape, xData);
            Tensor im2ColX = CreateTensor(im2ColXShape, im2ColXData);
            Tensor w       = CreateTensor(wShape, wData);
            Tensor dy      = CreateTensor(dyShape, dyData);
            Tensor dw      = CreateTensor();

            Tensor dy2DBuffer  = CreateTensor();
            Tensor dot2DBuffer = CreateTensor();

            x.ConvolutionDw(w, dy, dy2DBuffer, dot2DBuffer, im2ColX, dw);

            Assert.Equal(2, dw.Batch);
            Assert.Equal(2, dw.Channels);
            Assert.Equal(2, dw.Height);
            Assert.Equal(2, dw.Width);
            Assert.True(FloatComparison.AreEqual(dwExp, dw.Storage.Data));
        }