public Polygon GetPolygon(int edgeSubdivisions, float curvature)
 {
     Connector connector = new Connector ();
     for (int k=0; k<segments.Count; k++) {
         Segment s = segments [k];
         if (!s.deleted) {
             if (edgeSubdivisions>1) {
                 connector.AddRange (s.Subdivide(edgeSubdivisions, curvature));
             } else {
                 connector.Add (s);
             }
         }
     }
     return connector.ToPolygonFromLargestLineStrip ();
 }
Esempio n. 2
0
        public Polygon GetPolygon(int edgeSubdivisions, float curvature)
        {
            Connector connector = new Connector();

            for (int k = 0; k < segments.Count; k++)
            {
                Segment s = segments [k];
                if (!s.deleted)
                {
                    if (edgeSubdivisions > 1)
                    {
                        connector.AddRange(s.Subdivide(edgeSubdivisions, curvature));
                    }
                    else
                    {
                        connector.Add(s);
                    }
                }
            }
            return(connector.ToPolygonFromLargestLineStrip());
        }
        GameObject GenerateCellRegionSurface(int cellIndex, Material material)
        {
            if (cellIndex<0 || cellIndex>=cells.Count) return null;
            Region region = cells [cellIndex].region;

            // Calculate region's surface points
            int numSegments = region.segments.Count;
            Connector connector = new Connector();
            if (_terrain==null) {
                connector.AddRange(region.segments);
            } else {
                for (int i = 0; i<numSegments; i++) {
                    Segment s = region.segments[i];
                    SurfaceSegmentForSurface(s, connector);
                }
            }
            Geom.Polygon surfacedPolygon = connector.ToPolygonFromLargestLineStrip();
            List<Point> surfacedPoints = surfacedPolygon.contours[0].points;

            List<PolygonPoint> ppoints = new List<PolygonPoint>(surfacedPoints.Count);
            for (int k=0;k<surfacedPoints.Count;k++) {
                double x = surfacedPoints[k].x+2;
                double y = surfacedPoints[k].y+2;
                if (!IsTooNearPolygon(x, y, ppoints)) {
                    float h = _terrain!=null ? _terrain.SampleHeight(transform.TransformPoint((float)x-2, (float)y-2,0)): 0;
                    ppoints.Add (new PolygonPoint(x, y, h));
                }
            }
            Poly2Tri.Polygon poly = new Poly2Tri.Polygon(ppoints);

            if (_terrain!=null) {
                if (steinerPoints==null) {
                    steinerPoints = new List<TriangulationPoint>(6000);
                } else {
                    steinerPoints.Clear();
                }

                float stepX = 1.0f / heightMapWidth;
                float smallStep = 1.0f / heightMapWidth;
                float y = region.rect2D.yMin + smallStep;
                float ymax = region.rect2D.yMax - smallStep;
                float[] acumY = new float[terrainRoughnessMapWidth];
                while(y<ymax) {
                    int j = (int)((y + 0.5f) * terrainRoughnessMapHeight); // * heightMapHeight)) / TERRAIN_CHUNK_SIZE;
                    if (j>=0) {
                    if (j>=terrainRoughnessMapHeight) j=terrainRoughnessMapHeight-1;
                    float sy = y + 2;
                    float xin = GetFirstPointInRow(sy, ppoints) + smallStep;
                    float xout = GetLastPointInRow(sy, ppoints) - smallStep;
                    int k0 = -1;
                    for (float x = xin; x<xout; x+=stepX) {
                        int k = (int)((x + 0.5f) * terrainRoughnessMapWidth); //)) / TERRAIN_CHUNK_SIZE;
                        if (k>=terrainRoughnessMapWidth) k=terrainRoughnessMapWidth-1;
                        if (k0!=k) {
                            k0=k;
                            stepX = terrainRoughnessMap[j,k];
                            if (acumY[k] >= stepX) acumY[k] = 0;
                            acumY[k] += smallStep;
                        }
                        if (acumY[k] >= stepX) {
                            // Gather precision height
                            float h = _terrain.SampleHeight (transform.TransformPoint(x,y,0));
                            float htl = _terrain.SampleHeight (transform.TransformPoint (x-smallStep, y+smallStep, 0));
                            if (htl>h) h = htl;
                            float htr = _terrain.SampleHeight (transform.TransformPoint (x+smallStep, y+smallStep, 0));
                            if (htr>h) h = htr;
                            float hbr = _terrain.SampleHeight (transform.TransformPoint (x+smallStep, y-smallStep, 0));
                            if (hbr>h) h = hbr;
                            float hbl = _terrain.SampleHeight (transform.TransformPoint (x-smallStep, y-smallStep, 0));
                            if (hbl>h) h = hbl;
                            steinerPoints.Add (new PolygonPoint (x+2, sy, h));
                        }
                    }
                    }
                    y += smallStep;
                    if (steinerPoints.Count>80000) {
                        break;
                    }
                }
                poly.AddSteinerPoints(steinerPoints);
            }

            P2T.Triangulate(poly);

            // Calculate & optimize mesh data
            int pointCount = poly.Triangles.Count*3;
            List<Vector3> meshPoints = new List<Vector3> (pointCount);
            int[] triNew = new int[pointCount];
            if (surfaceMeshHit == null)
                surfaceMeshHit = new Dictionary<TriangulationPoint, int> (2000);
            else
                surfaceMeshHit.Clear ();

            int triNewIndex =-1;
            int newPointsCount = -1;

            if (_gridNormalOffset>0) {
                for (int k=0;k<poly.Triangles.Count;k++) {
                    DelaunayTriangle dt = poly.Triangles[k];
                    TriangulationPoint p = dt.Points [0];
                    if (surfaceMeshHit.ContainsKey (p)) {
                        triNew [++triNewIndex] = surfaceMeshHit [p];
                    } else {
                        Vector3 np = new Vector3(p.Xf-2, p.Yf-2, -p.Zf);
                        np += transform.InverseTransformVector(_terrain.terrainData.GetInterpolatedNormal(np.x+0.5f,np.y+0.5f)) * _gridNormalOffset;
                        meshPoints.Add (np);
                        surfaceMeshHit.Add (p, ++newPointsCount);
                        triNew [++triNewIndex] = newPointsCount;
                    }
                    p = dt.Points [2];
                    if (surfaceMeshHit.ContainsKey (p)) {
                        triNew [++triNewIndex] = surfaceMeshHit [p];
                    } else {
                        Vector3 np = new Vector3(p.Xf-2, p.Yf-2, -p.Zf);
                        np += transform.InverseTransformVector(_terrain.terrainData.GetInterpolatedNormal(np.x+0.5f,np.y+0.5f)) * _gridNormalOffset;
                        meshPoints.Add (np);
                        surfaceMeshHit.Add (p, ++newPointsCount);
                        triNew [++triNewIndex] = newPointsCount;
                    }
                    p = dt.Points [1];
                    if (surfaceMeshHit.ContainsKey (p)) {
                        triNew [++triNewIndex] = surfaceMeshHit [p];
                    } else {
                        Vector3 np = new Vector3(p.Xf-2, p.Yf-2, -p.Zf);
                        np += transform.InverseTransformVector(_terrain.terrainData.GetInterpolatedNormal(np.x+0.5f,np.y+0.5f)) * _gridNormalOffset;
                        meshPoints.Add (np);
                        surfaceMeshHit.Add (p, ++newPointsCount);
                        triNew [++triNewIndex] = newPointsCount;
                    }
                }
            } else {
                for (int k=0;k<poly.Triangles.Count;k++) {
                    DelaunayTriangle dt = poly.Triangles[k];
                    TriangulationPoint p = dt.Points [0];
                    if (surfaceMeshHit.ContainsKey (p)) {
                        triNew [++triNewIndex] = surfaceMeshHit [p];
                    } else {
                        Vector3 np = new Vector3(p.Xf-2, p.Yf-2, -p.Zf);
                        meshPoints.Add (np);
                        surfaceMeshHit.Add (p, ++newPointsCount);
                        triNew [++triNewIndex] = newPointsCount;
                    }
                    p = dt.Points [2];
                    if (surfaceMeshHit.ContainsKey (p)) {
                        triNew [++triNewIndex] = surfaceMeshHit [p];
                    } else {
                        Vector3 np = new Vector3(p.Xf-2, p.Yf-2, -p.Zf);
                        meshPoints.Add (np);
                        surfaceMeshHit.Add (p, ++newPointsCount);
                        triNew [++triNewIndex] = newPointsCount;
                    }
                    p = dt.Points [1];
                    if (surfaceMeshHit.ContainsKey (p)) {
                        triNew [++triNewIndex] = surfaceMeshHit [p];
                    } else {
                        Vector3 np = new Vector3(p.Xf-2, p.Yf-2, -p.Zf);
                        meshPoints.Add (np);
                        surfaceMeshHit.Add (p, ++newPointsCount);
                        triNew [++triNewIndex] = newPointsCount;
                    }
                }
            }

            int cacheIndex = GetCacheIndexForCellRegion (cellIndex);
            string cacheIndexSTR = cacheIndex.ToString();
            // Deletes potential residual surface
            Transform t = surfacesLayer.transform.FindChild(cacheIndexSTR);
            if (t!=null) DestroyImmediate(t.gameObject);
            GameObject surf = Drawing.CreateSurface (cacheIndexSTR, meshPoints.ToArray(), triNew, material);
            _lastVertexCount += surf.GetComponent<MeshFilter>().sharedMesh.vertexCount;
            surf.transform.SetParent (surfacesLayer.transform, false);
            surf.transform.localPosition = Vector3.zero;
            surf.layer = gameObject.layer;
            if (surfaces.ContainsKey(cacheIndex)) surfaces.Remove(cacheIndex);
            surfaces.Add (cacheIndex, surf);
            return surf;
        }
        void SetupHexagonalGrid()
        {
            // Make cell regions: we assume cells have only 1 region but that can change in the future
            int l = _numCells;
            int qx, qy;
            int q = (int)(Math.Sqrt (l));
            q = q * 12 / 13;
            if (q<1) q= 1;
            qx=qy=q;
            int qx2 = qx * 4 / 3;

            double stepX = (transform.localScale.y / transform.localScale.x) / qx;
            double stepY = (transform.localScale.x / transform.localScale.y) / qy;

            double halfStepX = stepX*0.5;
            double halfStepY = stepY*0.5;

            Segment [,,] sides = new Segment[qx2,qy,6]; // 0 = left-up, 1 = top, 2 = right-up, 3 = right-down, 4 = down, 5 = left-down
            int c = -1;
            int subdivisions = goodGridCurvature > 0 ? 3: 1;
            for (int j=0;j<qy;j++) {
                for (int k=0;k<qx2;k++) {
                    Point center = new Point((double)k/qx-0.5+halfStepX,(double)j/qy-0.5+halfStepY);
                    center.x -= k *  halfStepX/2;
                    Cell cell = new Cell( (++c).ToString(), new Vector2((float)center.x, (float)center.y));

                    double offsetY = (k % 2==0) ? 0: -halfStepY;

                    Segment leftUp =  (k>0 && offsetY<0) ? sides[k-1, j, 3]: new Segment(center.Offset(-halfStepX, offsetY), center.Offset(-halfStepX/2, halfStepY + offsetY), k==0 || (j==qy-1 && offsetY==0));
                    sides[k, j, 0] = leftUp;

                    Segment top = new Segment(center.Offset(-halfStepX/2, halfStepY + offsetY), center.Offset(halfStepX/2, halfStepY + offsetY), j==qy-1);
                    sides[k, j, 1] = top;

                    Segment rightUp = new Segment(center.Offset(halfStepX/2, halfStepY + offsetY), center.Offset(halfStepX, offsetY), k==qx2-1 || (j==qy-1 && offsetY==0));
                    sides[k, j, 2] = rightUp;

                    Segment rightDown = (j > 0 && k<qx2-1 && offsetY<0) ? sides[k+1,j-1,0]: new Segment(center.Offset(halfStepX, offsetY), center.Offset(halfStepX/2, -halfStepY + offsetY), (j==0 && offsetY<0)|| k==qx2-1);
                    sides[k, j, 3] = rightDown;

                    Segment bottom = j>0 ? sides[k, j-1, 1] : new Segment(center.Offset(halfStepX/2, -halfStepY + offsetY), center.Offset(-halfStepX/2, -halfStepY +offsetY), true);
                    sides[k, j, 4] = bottom;

                    Segment leftDown;
                    if (offsetY<0 && j>0) {
                        leftDown = sides[k-1, j-1, 2];
                    } else if (offsetY==0 && k>0) {
                        leftDown = sides[k-1, j, 2];
                    } else {
                        leftDown = new Segment(center.Offset(-halfStepX/2, -halfStepY+offsetY), center.Offset(-halfStepX, offsetY), true);
                    }
                    sides[k, j, 5] = leftDown;

                    if (j==0) {
            //						leftDown.CropBottom();
            //						bottom.CropBottom();
            //						rightDown.CropBottom();
                    }
                    if (k==qx2-1) {
                        top.CropRight();
                        rightUp.CropRight();
                        rightDown.CropRight();
                        bottom.CropRight();
                    }

                    Region cr = new Region (cell);
                    if (subdivisions>1) {
                        if (!top.deleted) cr.segments.AddRange (top.Subdivide(subdivisions, _gridCurvature));
                        if (!rightUp.deleted) cr.segments.AddRange (rightUp.Subdivide(subdivisions, _gridCurvature));
                        if (!rightDown.deleted) cr.segments.AddRange (rightDown.Subdivide(subdivisions, _gridCurvature));
                        if (!bottom.deleted) cr.segments.AddRange (bottom.Subdivide(subdivisions, _gridCurvature));
                        if (!leftDown.deleted) cr.segments.AddRange (leftDown.Subdivide(subdivisions, _gridCurvature));
                        if (!leftUp.deleted) cr.segments.AddRange (leftUp.Subdivide(subdivisions, _gridCurvature));
                    } else {
                        if (!top.deleted) cr.segments.Add (top);
                        if (!rightUp.deleted) cr.segments.Add (rightUp);
                        if (!rightDown.deleted) cr.segments.Add (rightDown);
                        if (!bottom.deleted) cr.segments.Add (bottom);
                        if (!leftDown.deleted) cr.segments.Add (leftDown);
                        if (!leftUp.deleted) cr.segments.Add (leftUp);
                    }
                    Connector connector = new Connector();
                    connector.AddRange(cr.segments);
                    cr.polygon = connector.ToPolygon(); // FromLargestLineStrip();
                    if (cr.polygon!=null) {
                        cell.region = cr;
                        cells.Add (cell);
                    }
                }
            }
        }
        void SetupBoxGrid(bool strictQuads)
        {
            // Make cell regions: we assume cells have only 1 region but that can change in the future
            int l = _numCells;
            int qx, qy;
            int q = (int)(Math.Sqrt (l));
            if (strictQuads) {
                qx=qy=q;
            } else {
                qx=l;
                qy=1;
                if (q<1) q=1;
                if ( (int)(q*q) != l) { // not squared
                    if (!GetTwoFactors(l, out qx, out qy)) {
                        // if number > 10 and it's prime, reduce by one so we can avoid ugly accordian grids
                        if (l>10) GetTwoFactors(l-1, out qx, out qy);
                    }
                } else {
                    qx = qy = q;
                }
            }
            double stepX = (transform.localScale.y / transform.localScale.x) / qx;
            double stepY = (transform.localScale.x / transform.localScale.y) / qy;

            double halfStepX = stepX*0.5;
            double halfStepY = stepY*0.5;

            Segment [,,] sides = new Segment[qx,qy,4]; // 0 = left, 1 = top, 2 = right, 3 = bottom
            int c = -1;
            int subdivisions = goodGridCurvature > 0 ? 3: 1;
            for (int k=0;k<qx;k++) {
                for (int j=0;j<qy;j++) {
                    Point center = new Point((double)k/qx-0.5+halfStepX,(double)j/qy-0.5+halfStepY);
                    Cell cell = new Cell( (++c).ToString(), new Vector2((float)center.x, (float)center.y));

                    Segment left = k>0 ? sides[k-1, j, 2] : new Segment(center.Offset(-halfStepX, -halfStepY), center.Offset(-halfStepX, halfStepY), true);
                    sides[k, j, 0] = left;

                    Segment top = new Segment(center.Offset(-halfStepX, halfStepY), center.Offset(halfStepX, halfStepY), j==qy-1);
                    sides[k, j, 1] = top;

                    Segment right = new Segment(center.Offset(halfStepX, halfStepY), center.Offset(halfStepX, -halfStepY), k==qx-1);
                    sides[k, j, 2] = right;

                    Segment bottom = j>0 ? sides[k, j-1, 1] : new Segment(center.Offset(halfStepX, -halfStepY), center.Offset(-halfStepX, -halfStepY), true);
                    sides[k, j, 3] = bottom;

                    Region cr = new Region (cell);
                    if (subdivisions>1) {
                        cr.segments.AddRange (top.Subdivide(subdivisions, _gridCurvature));
                        cr.segments.AddRange (right.Subdivide(subdivisions, _gridCurvature));
                        cr.segments.AddRange (bottom.Subdivide(subdivisions, _gridCurvature));
                        cr.segments.AddRange (left.Subdivide(subdivisions, _gridCurvature));
                    } else {
                        cr.segments.Add (top);
                        cr.segments.Add (right);
                        cr.segments.Add (bottom);
                        cr.segments.Add (left);
                    }
                    Connector connector = new Connector();
                    connector.AddRange(cr.segments);
                    cr.polygon = connector.ToPolygon(); // FromLargestLineStrip();
                    if (cr.polygon!=null) {
                        cell.region = cr;
                        cells.Add (cell);
                    }
                }
            }
        }
        GameObject GenerateTerritoryRegionSurface(int territoryIndex, Material material, Vector2 textureScale, Vector2 textureOffset, float textureRotation)
        {
            if (territoryIndex<0 || territoryIndex>=territories.Count) return null;
            Region region = territories [territoryIndex].region;

            // Calculate region's surface points
            int numSegments = region.segments.Count;
            Connector connector = new Connector();
            if (_terrain==null) {
                connector.AddRange(region.segments);
            } else {
                for (int i = 0; i<numSegments; i++) {
                    Segment s = region.segments[i];
                    SurfaceSegmentForSurface(s, connector);
                }
            }
            Geom.Polygon surfacedPolygon = connector.ToPolygonFromLargestLineStrip();
            List<Point> surfacedPoints = surfacedPolygon.contours[0].points;

            List<PolygonPoint> ppoints = new List<PolygonPoint>(surfacedPoints.Count);
            for (int k=0;k<surfacedPoints.Count;k++) {
                double x = surfacedPoints[k].x+2;
                double y = surfacedPoints[k].y+2;
                if (!IsTooNearPolygon(x, y, ppoints)) {
                    float h = _terrain!=null ? _terrain.SampleHeight(transform.TransformPoint((float)x-2, (float)y-2,0)): 0;
                    ppoints.Add (new PolygonPoint(x, y, h));
                }
            }
            Poly2Tri.Polygon poly = new Poly2Tri.Polygon(ppoints);

            if (_terrain!=null) {

                if (steinerPoints==null) {
                    steinerPoints = new List<TriangulationPoint>(6000);
                } else {
                    steinerPoints.Clear();
                }

                float stepX = 1.0f / heightMapWidth;
                float smallStep = 1.0f / heightMapWidth;
                float y = region.rect2D.yMin + smallStep;
                float ymax = region.rect2D.yMax - smallStep;
                float[] acumY = new float[terrainRoughnessMapWidth];
                while(y<ymax) {
                    int j = (int)((y + 0.5f) * terrainRoughnessMapHeight); // * heightMapHeight)) / TERRAIN_CHUNK_SIZE;
                    if (j>=terrainRoughnessMapHeight) j=terrainRoughnessMapHeight-1;
                    float sy = y + 2;
                    float xin = GetFirstPointInRow(sy, ppoints) + smallStep;
                    float xout = GetLastPointInRow(sy, ppoints) - smallStep;
                    int k0 = -1;
                    for (float x = xin; x<xout; x+=stepX) {
                        int k = (int)((x + 0.5f) * terrainRoughnessMapWidth); //)) / TERRAIN_CHUNK_SIZE;
                        if (k>=terrainRoughnessMapWidth) k=terrainRoughnessMapWidth-1;
                        if (k0!=k) {
                            k0=k;
                            stepX = terrainRoughnessMap[j,k];
                            if (acumY[k] >= stepX) acumY[k] = 0;
                            acumY[k] += smallStep;
                        }
                        if (acumY[k] >= stepX) {
                            // Gather precision height
                            float h = _terrain.SampleHeight (transform.TransformPoint(x,y,0));
                            float htl = _terrain.SampleHeight (transform.TransformPoint (x-smallStep, y+smallStep, 0));
                            if (htl>h) h = htl;
                            float htr = _terrain.SampleHeight (transform.TransformPoint (x+smallStep, y+smallStep, 0));
                            if (htr>h) h = htr;
                            float hbr = _terrain.SampleHeight (transform.TransformPoint (x+smallStep, y-smallStep, 0));
                            if (hbr>h) h = hbr;
                            float hbl = _terrain.SampleHeight (transform.TransformPoint (x-smallStep, y-smallStep, 0));
                            if (hbl>h) h = hbl;
                            steinerPoints.Add (new PolygonPoint (x+2, sy, h));
                        }
                    }
                    y += smallStep;
                    if (steinerPoints.Count>80000) {
                        break;
                    }
                }
                poly.AddSteinerPoints(steinerPoints);
            }

            P2T.Triangulate(poly);

            Vector3[] revisedSurfPoints = new Vector3[poly.Triangles.Count*3];

            if (_gridNormalOffset>0) {
                for (int k=0;k<poly.Triangles.Count;k++) {
                    DelaunayTriangle dt = poly.Triangles[k];
                    float x = dt.Points[0].Xf-2;
                    float y = dt.Points[0].Yf-2;
                    float z = -dt.Points[0].Zf;
                    Vector3 nd = transform.InverseTransformVector(_terrain.terrainData.GetInterpolatedNormal(x+0.5f,y+0.5f)) * _gridNormalOffset;
                    revisedSurfPoints[k*3].x = x + nd.x;
                    revisedSurfPoints[k*3].y = y + nd.y;
                    revisedSurfPoints[k*3].z = z + nd.z;

                    x = dt.Points[2].Xf-2;
                    y = dt.Points[2].Yf-2;
                    z = -dt.Points[2].Zf;
                    nd = transform.InverseTransformVector(_terrain.terrainData.GetInterpolatedNormal(x+0.5f,y+0.5f)) * _gridNormalOffset;
                    revisedSurfPoints[k*3+1].x = x + nd.x;
                    revisedSurfPoints[k*3+1].y = y + nd.y;
                    revisedSurfPoints[k*3+1].z = z + nd.z;

                    x = dt.Points[1].Xf-2;
                    y = dt.Points[1].Yf-2;
                    z = -dt.Points[1].Zf;
                    nd = transform.InverseTransformVector(_terrain.terrainData.GetInterpolatedNormal(x+0.5f,y+0.5f)) * _gridNormalOffset;
                    revisedSurfPoints[k*3+2].x = x + nd.x;
                    revisedSurfPoints[k*3+2].y = y + nd.y;
                    revisedSurfPoints[k*3+2].z = z + nd.z;
                }
            } else {
                for (int k=0;k<poly.Triangles.Count;k++) {
                    DelaunayTriangle dt = poly.Triangles[k];
                    revisedSurfPoints[k*3].x = dt.Points[0].Xf-2;
                    revisedSurfPoints[k*3].y = dt.Points[0].Yf-2;
                    revisedSurfPoints[k*3].z = -dt.Points[0].Zf;
                    revisedSurfPoints[k*3+1].x = dt.Points[2].Xf-2;
                    revisedSurfPoints[k*3+1].y = dt.Points[2].Yf-2;
                    revisedSurfPoints[k*3+1].z = -dt.Points[2].Zf;
                    revisedSurfPoints[k*3+2].x = dt.Points[1].Xf-2;
                    revisedSurfPoints[k*3+2].y = dt.Points[1].Yf-2;
                    revisedSurfPoints[k*3+2].z = -dt.Points[1].Zf;
                }
            }
            int cacheIndex = GetCacheIndexForTerritoryRegion (territoryIndex);
            string cacheIndexSTR = cacheIndex.ToString();
            // Deletes potential residual surface
            Transform t = surfacesLayer.transform.FindChild(cacheIndexSTR);
            if (t!=null) DestroyImmediate(t.gameObject);
            GameObject surf = Drawing.CreateSurface (cacheIndexSTR, revisedSurfPoints, material);
            surf.transform.SetParent (surfacesLayer.transform, false);
            surf.transform.localPosition = Vector3.zero;
            surf.layer = gameObject.layer;
            if (surfaces.ContainsKey(cacheIndex)) surfaces.Remove(cacheIndex);
            surfaces.Add (cacheIndex, surf);

            return surf;
        }