Esempio n. 1
0
        /// move_to_san() takes a position and a legal Move as input and returns its
        /// short algebraic notation representation.
        public static string move_to_san(Position pos, Move m)
        {
            if (m == MoveS.MOVE_NONE)
            {
                return("(none)");
            }

            if (m == MoveS.MOVE_NULL)
            {
                return("(null)");
            }

            Debug.Assert((new MoveList(pos, GenTypeS.LEGAL).contains(m)));

            Bitboard  others, b;
            string    san  = "";
            Color     us   = pos.side_to_move();
            Square    from = Types.from_sq(m);
            Square    to   = Types.to_sq(m);
            Piece     pc   = pos.piece_on(from);
            PieceType pt   = Types.type_of_piece(pc);

            if (Types.type_of_move(m) == MoveTypeS.CASTLING)
            {
                san = to > from ? "O-O" : "O-O-O";
            }
            else
            {
                if (pt != PieceTypeS.PAWN)
                {
                    san = "" + PieceToChar[ColorS.WHITE][pt]; // Upper case

                    // A disambiguation occurs if we have more then one piece of type 'pt'
                    // that can reach 'to' with a legal move.
                    others = b = (pos.attacks_from_piece_square(pc, to) & pos.pieces_color_piecetype(us, pt)) ^ BitBoard.SquareBB[from];

                    while (b != 0)
                    {
                        Square s = BitBoard.pop_lsb(ref b);
                        if (!pos.legal(Types.make_move(s, to), pos.pinned_pieces(us)))
                        {
                            others ^= BitBoard.SquareBB[s];
                        }
                    }

                    if (0 == others)
                    { /* Disambiguation is not needed */
                    }

                    else if (0 == (others & BitBoard.file_bb_square(from)))
                    {
                        san += Types.file_to_char(Types.file_of(from));
                    }

                    else if (0 == (others & BitBoard.rank_bb_square(from)))
                    {
                        san += Types.rank_to_char(Types.rank_of(from));
                    }

                    else
                    {
                        san += Types.square_to_string(from);
                    }
                }
                else if (pos.capture(m))
                {
                    san = "" + Types.file_to_char(Types.file_of(from));
                }

                if (pos.capture(m))
                {
                    san += 'x';
                }

                san += Types.square_to_string(to);

                if (Types.type_of_move(m) == MoveTypeS.PROMOTION)
                {
                    san += "=" + PieceToChar[ColorS.WHITE][Types.promotion_type(m)];
                }
            }

            if (pos.gives_check(m, new CheckInfo(pos)))
            {
                StateInfo st = new StateInfo();
                pos.do_move(m, st);
                san += (new MoveList(pos, GenTypeS.LEGAL)).size() > 0 ? "+" : "#";
                pos.undo_move(m);
            }

            return(san);
        }
Esempio n. 2
0
            /// Entry::shelter_storm() calculates shelter and storm penalties for the file
            /// the king is on, as well as the two adjacent files.
            public Value shelter_storm(Position pos, Square ksq, Color Us)
            {
                Color Them = (Us == ColorS.WHITE ? ColorS.BLACK : ColorS.WHITE);

                Value    safety = Pawns.MaxSafetyBonus;
                Bitboard b = pos.pieces_piecetype(PieceTypeS.PAWN) & (BitBoard.in_front_bb(Us, Types.rank_of(ksq)) | BitBoard.rank_bb_square(ksq));
                Bitboard ourPawns = b & pos.pieces_color(Us);
                Bitboard theirPawns = b & pos.pieces_color(Them);
                Rank     rkUs, rkThem;
                File     kf = Math.Max(FileS.FILE_B, Math.Min(FileS.FILE_G, Types.file_of(ksq)));

                for (File f = kf - 1; f <= kf + 1; ++f)
                {
                    b    = ourPawns & BitBoard.file_bb_file(f);
                    rkUs = b != 0 ? Types.relative_rank_square(Us, BitBoard.backmost_sq(Us, b)) : RankS.RANK_1;

                    b      = theirPawns & BitBoard.file_bb_file(f);
                    rkThem = b != 0 ? Types.relative_rank_square(Us, BitBoard.frontmost_sq(Them, b)) : RankS.RANK_1;

                    if ((MiddleEdges & BitBoard.SquareBB[Types.make_square(f, rkThem)]) != 0 &&
                        Types.file_of(ksq) == f &&
                        Types.relative_rank_square(Us, ksq) == rkThem - 1)
                    {
                        safety += 200;
                    }
                    else
                    {
                        safety -= ShelterWeakness[rkUs]
                                  + StormDanger[rkUs == RankS.RANK_1 ? 0 : rkThem == rkUs + 1 ? 2 : 1][rkThem];
                    }
                }

                return(safety);
            }
Esempio n. 3
0
        public static Score evaluate(Position pos, Pawns.Entry e, Color Us)
        {
            Color  Them  = (Us == ColorS.WHITE ? ColorS.BLACK : ColorS.WHITE);
            Square Up    = (Us == ColorS.WHITE ? SquareS.DELTA_N : SquareS.DELTA_S);
            Square Right = (Us == ColorS.WHITE ? SquareS.DELTA_NE : SquareS.DELTA_SW);
            Square Left  = (Us == ColorS.WHITE ? SquareS.DELTA_NW : SquareS.DELTA_SE);

            Bitboard b, p, doubled;
            Square   s;
            File     f;
            Rank     r;
            bool     passed, isolated, opposed, connected, backward, candidate, unsupported;
            Score    value = ScoreS.SCORE_ZERO;

            Square[] pl    = pos.list(Us, PieceTypeS.PAWN);
            int      plPos = 0;

            Bitboard ourPawns   = pos.pieces_color_piecetype(Us, PieceTypeS.PAWN);
            Bitboard theirPawns = pos.pieces_color_piecetype(Them, PieceTypeS.PAWN);

            e.passedPawns[Us]   = e.candidatePawns[Us] = 0;
            e.kingSquares[Us]   = SquareS.SQ_NONE;
            e.semiopenFiles[Us] = 0xFF;
            e.pawnAttacks[Us]   = BitBoard.shift_bb(ourPawns, Right) | BitBoard.shift_bb(ourPawns, Left);
            e.pawnsOnSquares[Us][ColorS.BLACK] = Bitcount.popcount_Max15(ourPawns & BitBoard.DarkSquares);
            e.pawnsOnSquares[Us][ColorS.WHITE] = pos.count(Us, PieceTypeS.PAWN) - e.pawnsOnSquares[Us][ColorS.BLACK];

            // Loop through all pawns of the current color and score each pawn
            while ((s = pl[plPos++]) != SquareS.SQ_NONE)
            {
                Debug.Assert(pos.piece_on(s) == Types.make_piece(Us, PieceTypeS.PAWN));

                f = Types.file_of(s);


                // This file cannot be semi-open
                e.semiopenFiles[Us] &= ~(1 << f);

                // Previous rank
                p = BitBoard.rank_bb_square(s - Types.pawn_push(Us));

                // Our rank plus previous one
                b = BitBoard.rank_bb_square(s) | p;

                // Flag the pawn as passed, isolated, doubled,
                // unsupported or connected (but not the backward one).
                connected   = (ourPawns & BitBoard.adjacent_files_bb(f) & b) != 0;
                unsupported = (0 == (ourPawns & BitBoard.adjacent_files_bb(f) & p));
                isolated    = (0 == (ourPawns & BitBoard.adjacent_files_bb(f)));
                doubled     = ourPawns & BitBoard.forward_bb(Us, s);
                opposed     = (theirPawns & BitBoard.forward_bb(Us, s)) != 0;
                passed      = (0 == (theirPawns & BitBoard.passed_pawn_mask(Us, s)));

                // Test for backward pawn.
                // If the pawn is passed, isolated, or connected it cannot be
                // backward. If there are friendly pawns behind on adjacent files
                // or if it can capture an enemy pawn it cannot be backward either.
                if ((passed | isolated | connected) ||
                    (ourPawns & BitBoard.pawn_attack_span(Them, s)) != 0 ||
                    (pos.attacks_from_pawn(s, Us) & theirPawns) != 0)
                {
                    backward = false;
                }
                else
                {
                    // We now know that there are no friendly pawns beside or behind this
                    // pawn on adjacent files. We now check whether the pawn is
                    // backward by looking in the forward direction on the adjacent
                    // files, and picking the closest pawn there.
                    b = BitBoard.pawn_attack_span(Us, s) & (ourPawns | theirPawns);
                    b = BitBoard.pawn_attack_span(Us, s) & BitBoard.rank_bb_square(BitBoard.backmost_sq(Us, b));

                    // If we have an enemy pawn in the same or next rank, the pawn is
                    // backward because it cannot advance without being captured.
                    backward = ((b | BitBoard.shift_bb(b, Up)) & theirPawns) != 0;
                }

                Debug.Assert(opposed | passed | (BitBoard.pawn_attack_span(Us, s) & theirPawns) != 0);

                // A not-passed pawn is a candidate to become passed, if it is free to
                // advance and if the number of friendly pawns beside or behind this
                // pawn on adjacent files is higher than or equal to the number of
                // enemy pawns in the forward direction on the adjacent files.
                candidate = !(opposed | passed | backward | isolated) &&
                            (b = BitBoard.pawn_attack_span(Them, s + Types.pawn_push(Us)) & ourPawns) != 0 &&
                            Bitcount.popcount_Max15(b) >= Bitcount.popcount_Max15(BitBoard.pawn_attack_span(Us, s) & theirPawns);

                // Passed pawns will be properly scored in evaluation because we need
                // full attack info to evaluate passed pawns. Only the frontmost passed
                // pawn on each file is considered a true passed pawn.
                if (passed && 0 == doubled)
                {
                    e.passedPawns[Us] |= BitBoard.SquareBB[s];
                }

                // Score this pawn
                if (isolated)
                {
                    value -= Isolated[opposed ? 1 : 0][f];
                }

                if (unsupported && !isolated)
                {
                    value -= UnsupportedPawnPenalty;
                }

                if (doubled != 0)
                {
                    value -= Types.divScore(Doubled[f], BitBoard.rank_distance(s, BitBoard.lsb(doubled)));
                }

                if (backward)
                {
                    value -= Backward[opposed ? 1 : 0][f];
                }

                if (connected)
                {
                    value += Connected[f][Types.relative_rank_square(Us, s)];
                }

                if (candidate)
                {
                    value += CandidatePassed[Types.relative_rank_square(Us, s)];

                    if (0 == doubled)
                    {
                        e.candidatePawns[Us] |= BitBoard.SquareBB[s];
                    }
                }
            }

            // In endgame it's better to have pawns on both wings. So give a bonus according
            // to file distance between left and right outermost pawns.
            if (pos.count(Us, PieceTypeS.PAWN) > 1)
            {
                b      = (Bitboard)(e.semiopenFiles[Us] ^ 0xFF);
                value += PawnsFileSpan * (BitBoard.msb(b) - BitBoard.lsb(b));
            }

            return(value);
        }
Esempio n. 4
0
        // init_magics() computes all rook and bishop attacks at startup. Magic
        // bitboards are used to look up attacks of sliding pieces. As a reference see
        // chessprogramming.wikispaces.com/Magic+Bitboards. In particular, here we
        // use the so called "fancy" approach.
        public static void init_magics(PieceType pt, Bitboard[][] attacks, Bitboard[] magics,
                                       Bitboard[] masks, uint[] shifts, Square[] deltas, Fn index)
        {
            int[][] MagicBoosters = new int[2][] {
                new int[] { 969, 1976, 2850, 542, 2069, 2852, 1708, 164 },
                new int[] { 3101, 552, 3555, 926, 834, 26, 2131, 1117 }
            };

            RKISS rk = new RKISS();

            Bitboard[] occupancy = new UInt64[4096], reference = new UInt64[4096];
            Bitboard   edges, b;
            int        i, size, booster;

            for (Square s = SquareS.SQ_A1; s <= SquareS.SQ_H8; s++)
            {
                // Board edges are not considered in the relevant occupancies
                edges = ((BitBoard.Rank1BB | BitBoard.Rank8BB) & ~BitBoard.rank_bb_square(s)) | ((BitBoard.FileABB | BitBoard.FileHBB) & ~BitBoard.file_bb_square(s));

                // Given a square 's', the mask is the bitboard of sliding attacks from
                // 's' computed on an empty board. The index must be big enough to contain
                // all the attacks for each possible subset of the mask and so is 2 power
                // the number of 1s of the mask. Hence we deduce the size of the shift to
                // apply to the 64 or 32 bits word to get the index.
                masks[s]  = sliding_attack(deltas, s, 0) & ~edges;
                shifts[s] = 32 - (uint)Bitcount.popcount_Max15(masks[s]);

                // Use Carry-Rippler trick to enumerate all subsets of masks[s] and
                // store the corresponding sliding attack bitboard in reference[].
                b    = 0;
                size = 0;
                do
                {
                    occupancy[size] = b;
                    reference[size] = sliding_attack(deltas, s, b);
                    size++;
                    b = (b - masks[s]) & masks[s];
                } while (b != 0);

                // Set the offset for the table of the next square. We have individual
                // table sizes for each square with "Fancy Magic Bitboards".
                attacks[s] = new Bitboard[size];
                booster    = MagicBoosters[0][Types.rank_of(s)];

                // Find a magic for square 's' picking up an (almost) random number
                // until we find the one that passes the verification test.
                do
                {
                    do
                    {
                        magics[s] = rk.magic_rand(booster);
                    }while (Bitcount.popcount_Max15((magics[s] * masks[s]) >> 56) < 6);

                    Array.Clear(attacks[s], 0, size);

                    // A good magic must map every possible occupancy to an index that
                    // looks up the correct sliding attack in the attacks[s] database.
                    // Note that we build up the database for square 's' as a side
                    // effect of verifying the magic.
                    for (i = 0; i < size; i++)
                    {
                        Bitboard attack = attacks[s][index(s, occupancy[i], pt)];

                        if (attack != 0 && attack != reference[i])
                        {
                            break;
                        }

                        Debug.Assert(reference[i] != 0);

                        //attack = reference[i];
                        attacks[s][index(s, occupancy[i], pt)] = reference[i];
                    }
                } while (i != size);
            }
        }