Esempio n. 1
0
        // The data are preprocessed (quantized) to avoid sorting
        public BoostTree(LabelFeatureDataCoded labelFeatureDataCoded, LabelFeatureData subModelScore,
                        Model subModel, BoostTreeLoss boostTreeLoss,
                        string saveTreeBinFile, string saveTreeTextFile)
        {
            this.labelFeatureDataCoded = labelFeatureDataCoded;
            this.subModelScore = subModelScore;

            UnpackData();

            this.subModel = subModel;
            this.boostTreeLoss = boostTreeLoss;
            this.featureNames = labelFeatureDataCoded.FeatureNames;

            this.saveTreeBinFile = saveTreeBinFile;
            this.saveTreeTextFile = saveTreeTextFile;
            this.saveTreeXmlFile = saveTreeTextFile + ".xml";
        }
Esempio n. 2
0
 /// <summary>
 /// Compute and store the scores of the input data given a model
 /// </summary>
 /// <param name="model">the model to be evaluated</param>
 /// <param name="labelFeatureData">input data</param>        
 /// <param name="subModelScore">pre-computed scores for the input data</param>    
 public void ModelEval(Model model, LabelFeatureData labelFeatureData, LabelFeatureData subModelScore)
 {
     if (subModelScore != null)
     {
         Debug.Assert(this.numSamples == subModelScore.NumDataPoint);
         for (int i = 0; i < this.numSamples; i++)
         {
             this.score[i] = subModelScore.GetFeature(0, i);
         }
     }
     else if (model != null && labelFeatureData != null)
     {
         Debug.Assert(this.numSamples == labelFeatureData.NumDataPoint);
         float[] scores = new float[1];
         for (int i = 0; i < this.numSamples; i++)
         {
             model.Evaluate(labelFeatureData.GetFeature(i), scores);
             this.score[i] = scores[0];
         }
     }
     else
     {
         for (int i = 0; i < this.numSamples; i++)
         {
             this.score[i] = 0.0F;
         }
     }
 }
Esempio n. 3
0
 /// <summary>
 /// Compute and store the scores of the input data given a model
 /// </summary>
 /// <param name="model">the model to be evaluated</param>
 /// <param name="labelFeatureData">input data</param>        
 /// <param name="subModelScore">pre-computed scores for the input data</param>    
 public void ModelEval(Model model, LabelFeatureData labelFeatureData, LabelFeatureData subModelScore)
 {
     if (subModelScore != null)
     {
         Debug.Assert(this.numSamples == subModelScore.NumDataPoint);
         for (int i = 0; i < this.numSamples; i++)
         {
             for (int k = 0; k < this.numClass; k++)
             {
                 this.ModelScores[k][i] = subModelScore.GetFeature(k, i);
             }
         }
     }
     else if (model != null && labelFeatureData != null) // REVIEW by CJCB: this was 'if', I think it should be 'else if' so I changed it
     {
         Debug.Assert(this.numSamples == labelFeatureData.NumDataPoint);
         float[] scores = new float[this.numClass];
         for (int i = 0; i < this.numSamples; i++)
         {
             model.Evaluate(labelFeatureData.GetFeature(i), scores);
             for (int k = 0; k < this.numClass; k++)
             {
                 this.ModelScores[k][i] = scores[k];
             }
         }
     }
     else
     {
         //TODO: qiangwu - should we always requre subModel to exist
         //to make the default model value computation explicit???
         //It is probabaly safer that way revist the issue later
         float score = (float)1.0 / (float)this.numClass;
         for (int i = 0; i < this.numSamples; i++)
         {
             for (int k = 0; k < this.numClass; k++)
             {
                 this.ModelScores[k][i] = score;
             }
         }
     }
 }
Esempio n. 4
0
 /// <summary>
 /// Compute and store the scores of the input data given a model
 /// </summary>
 /// <param name="model">the model to be evaluated</param>
 /// <param name="data">input data</param>
 public void ModelEval(Model model, float[][] data)
 {
     Debug.Assert(this.numSamples == data.Length);
 }