Esempio n. 1
0
		//***********************************************************************
		// Performs the calculation of the kth term in the Lucas Sequence.
		// For details of the algorithm, see reference [9].
		//
		// k must be odd.  i.e LSB == 1
		//***********************************************************************

		private static BigInteger[] LucasSequenceHelper(BigInteger P, BigInteger Q,
														BigInteger k, BigInteger n,
														BigInteger constant, int s)
		{
			BigInteger[] result = new BigInteger[3];

			if ((k.data[0] & 0x00000001) == 0)
				throw (new ArgumentException("Argument k must be odd."));

			int numbits = k.bitCount();
			uint mask = (uint)0x1 << ((numbits & 0x1F) - 1);

			// v = v0, v1 = v1, u1 = u1, Q_k = Q^0

			BigInteger v = 2 % n, Q_k = 1 % n,
					   v1 = P % n, u1 = Q_k;
			bool flag = true;

			for (int i = k.dataLength - 1; i >= 0; i--)     // iterate on the binary expansion of k
			{
				//Console.WriteLine("round");
				while (mask != 0)
				{
					if (i == 0 && mask == 0x00000001)        // last bit
						break;

					if ((k.data[i] & mask) != 0)             // bit is set
					{
						// index doubling with addition

						u1 = (u1 * v1) % n;

						v = ((v * v1) - (P * Q_k)) % n;
						v1 = n.BarrettReduction(v1 * v1, n, constant);
						v1 = (v1 - ((Q_k * Q) << 1)) % n;

						if (flag)
							flag = false;
						else
							Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

						Q_k = (Q_k * Q) % n;
					}
					else
					{
						// index doubling
						u1 = ((u1 * v) - Q_k) % n;

						v1 = ((v * v1) - (P * Q_k)) % n;
						v = n.BarrettReduction(v * v, n, constant);
						v = (v - (Q_k << 1)) % n;

						if (flag)
						{
							Q_k = Q % n;
							flag = false;
						}
						else
							Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
					}

					mask >>= 1;
				}
				mask = 0x80000000;
			}

			// at this point u1 = u(n+1) and v = v(n)
			// since the last bit always 1, we need to transform u1 to u(2n+1) and v to v(2n+1)

			u1 = ((u1 * v) - Q_k) % n;
			v = ((v * v1) - (P * Q_k)) % n;
			if (flag)
				flag = false;
			else
				Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);

			Q_k = (Q_k * Q) % n;


			for (int i = 0; i < s; i++)
			{
				// index doubling
				u1 = (u1 * v) % n;
				v = ((v * v) - (Q_k << 1)) % n;

				if (flag)
				{
					Q_k = Q % n;
					flag = false;
				}
				else
					Q_k = n.BarrettReduction(Q_k * Q_k, n, constant);
			}

			result[0] = u1;
			result[1] = v;
			result[2] = Q_k;

			return result;
		}
Esempio n. 2
0
		internal bool LucasStrongTestHelper(BigInteger thisVal)
		{
			// Do the test (selects D based on Selfridge)
			// Let D be the first element of the sequence
			// 5, -7, 9, -11, 13, ... for which J(D,n) = -1
			// Let P = 1, Q = (1-D) / 4

			long D = 5, sign = -1, dCount = 0;
			bool done = false;

			while (!done)
			{
				int Jresult = BigInteger.Jacobi(D, thisVal);

				if (Jresult == -1)
					done = true;    // J(D, this) = 1
				else
				{
					if (Jresult == 0 && Math.Abs(D) < thisVal)       // divisor found
						return false;

					if (dCount == 20)
					{
						// check for square
						BigInteger root = thisVal.sqrt();
						if (root * root == thisVal)
							return false;
					}

					//Console.WriteLine(D);
					D = (Math.Abs(D) + 2) * sign;
					sign = -sign;
				}
				dCount++;
			}

			long Q = (1 - D) >> 2;

			BigInteger p_add1 = thisVal + 1;
			int s = 0;

			for (int index = 0; index < p_add1.dataLength; index++)
			{
				uint mask = 0x01;

				for (int i = 0; i < 32; i++)
				{
					if ((p_add1.data[index] & mask) != 0)
					{
						index = p_add1.dataLength;      // to break the outer loop
						break;
					}
					mask <<= 1;
					s++;
				}
			}

			BigInteger t = p_add1 >> s;

			// calculate constant = b^(2k) / m
			// for Barrett Reduction
			BigInteger constant = new BigInteger();

			int nLen = thisVal.dataLength << 1;
			constant.data[nLen] = 0x00000001;
			constant.dataLength = nLen + 1;

			constant = constant / thisVal;

			BigInteger[] lucas = LucasSequenceHelper(1, Q, t, thisVal, constant, 0);
			bool isPrime = false;

			if ((lucas[0].dataLength == 1 && lucas[0].data[0] == 0) ||
			   (lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
			{
				// u(t) = 0 or V(t) = 0
				isPrime = true;
			}

			for (int i = 1; i < s; i++)
			{
				if (!isPrime)
				{
					// doubling of index
					lucas[1] = thisVal.BarrettReduction(lucas[1] * lucas[1], thisVal, constant);
					lucas[1] = (lucas[1] - (lucas[2] << 1)) % thisVal;

					if ((lucas[1].dataLength == 1 && lucas[1].data[0] == 0))
						isPrime = true;
				}

				lucas[2] = thisVal.BarrettReduction(lucas[2] * lucas[2], thisVal, constant);     //Q^k
			}


			if (isPrime)     // additional checks for composite numbers
			{
				// If n is prime and gcd(n, Q) == 1, then
				// Q^((n+1)/2) = Q * Q^((n-1)/2) is congruent to (Q * J(Q, n)) mod n

				BigInteger g = thisVal.gcd(Q);
				if (g.dataLength == 1 && g.data[0] == 1)         // gcd(this, Q) == 1
				{
					if ((lucas[2].data[maxLength - 1] & 0x80000000) != 0)
						lucas[2] += thisVal;

					BigInteger temp = (Q * BigInteger.Jacobi(Q, thisVal)) % thisVal;
					if ((temp.data[maxLength - 1] & 0x80000000) != 0)
						temp += thisVal;

					if (lucas[2] != temp)
						isPrime = false;
				}
			}

			return isPrime;
		}