void TranslateInstance(Frame frame)
        {
            // Create a new Linear kernel
            IKernel kernel = new Linear();

            // Create a new Multi-class Support Vector Machine with one input,
            //  using the linear kernel and for four disjoint classes.
            var machine = new MulticlassSupportVectorMachine(5, kernel, numOfClasses);

            // Create the Multi-class learning algorithm for the machine
            var teacher = new MulticlassSupportVectorLearning(machine, inputs, outputs);

            // Configure the learning algorithm to use SMO to train the
            //  underlying SVMs in each of the binary class subproblems.
            teacher.Algorithm = (svm, classInputs, classOutputs, i, j) =>
                                new SequentialMinimalOptimization(svm, classInputs, classOutputs);

            // Run the learning algorithm
            double error = teacher.Run(); // output should be 0

            double[] distances = new double[5];
            distances = LeapEventListener.getDistances(frame);

            int decision = machine.Compute(distances); //svm AI

            output.Text = output.Text + Char2SvmClass.class2svm(decision);
        }
        private void TranslateBtn_Click(object sender, EventArgs e)
        {
            double[] distances = new double[5];
            distances = LeapEventListener.getDistances(currentFrame);

            if (LeapEventListener.isZeros(distances) == true)
            {
                MessageBox.Show("The frame is null.\n Try reconnecting the Leap device", "Application Error",
                                MessageBoxButtons.OKCancel, MessageBoxIcon.Warning);
            }
            else
            {
                // Create a new Linear kernel
                IKernel kernel = new Linear();

                // Create a new Multi-class Support Vector Machine with one input,
                //  using the linear kernel and for four disjoint classes.
                var machine = new MulticlassSupportVectorMachine(5, kernel, numOfClasses);

                // Create the Multi-class learning algorithm for the machine
                var teacher = new MulticlassSupportVectorLearning(machine, inputs, outputs);

                // Configure the learning algorithm to use SMO to train the
                //  underlying SVMs in each of the binary class subproblems.
                teacher.Algorithm = (svm, classInputs, classOutputs, i, j) =>
                                    new SequentialMinimalOptimization(svm, classInputs, classOutputs);

                // Run the learning algorithm
                double error = teacher.Run(); // output should be 0



                int decision = machine.Compute(distances); //svm AI
                output.Text = output.Text + Char2SvmClass.class2svm(decision);
            }
        }