Esempio n. 1
0
 /// <summary>
 /// Create a genome with the provided internal state/definition data/objects.
 /// Overridable method to allow alternative NeatGenome sub-classes to be used.
 /// </summary>
 public virtual NeatGenome CreateGenome(uint id,
                                        uint birthGeneration,
                                        NeuronGeneList neuronGeneList,
                                        ConnectionGeneList connectionGeneList,
                                        int inputNeuronCount,
                                        int outputNeuronCount,
                                        bool rebuildNeuronGeneConnectionInfo)
 {
     return(new NeatGenome(this, id, birthGeneration, neuronGeneList, connectionGeneList,
                           inputNeuronCount, outputNeuronCount, rebuildNeuronGeneConnectionInfo));
 }
Esempio n. 2
0
        /// <summary>
        /// Sort connection genes into ascending order by their innovation IDs.
        ///
        /// Sorts the non-protected connections in the active module. The
        /// protected connections are sorted by construction, and we do not want
        /// to interfere with older modules.
        /// </summary>
        public void SortByInnovationId()
        {
            // Fist we get only the active part in a new List.
            ConnectionGeneList littleList = new ConnectionGeneList(Count -
                                                                   _firstActiveIndex);

            for (int i = _firstActiveIndex; i < Count; ++i)
            {
                littleList.Add(this[i]);
            }
            // Now we sort only the active part...
            littleList.Sort(__connectionGeneComparer);
            // And we copy back these values.
            int small_indx = 0;

            for (int i = _firstActiveIndex; i < Count; ++i)
            {
                this[i] = littleList[small_indx];
                ++small_indx;
            }
        }
        /// <summary>
        /// Creates a single randomly initialised genome.
        /// A random set of connections are made form the input to the output neurons, the number of
        /// connections made is based on the NeatGenomeParameters.InitialInterconnectionsProportion
        /// which specifies the proportion of all possible input-output connections to be made in
        /// initial genomes.
        ///
        /// The connections that are made are allocated innovation IDs in a consistent manner across
        /// the initial population of genomes. To do this we allocate IDs sequentially to all possible
        /// interconnections and then randomly select some proportion of connections for inclusion in the
        /// genome. In addition, for this scheme to work the innovation ID generator must be reset to zero
        /// prior to each call to CreateGenome(), and a test is made to ensure this is the case.
        ///
        /// The consistent allocation of innovation IDs ensure that equivalent connections in different
        /// genomes have the same innovation ID, and although this isn't strictly necessary it is
        /// required for sexual reproduction to work effectively - like structures are detected by comparing
        /// innovation IDs only.
        /// </summary>
        /// <param name="birthGeneration">The current evolution algorithm generation.
        /// Assigned to the new genome as its birth generation.</param>
        public NeatGenome CreateGenome(uint birthGeneration)
        {
            NeuronGeneList neuronGeneList       = new NeuronGeneList(_inputNeuronCount + _outputNeuronCount);
            NeuronGeneList inputNeuronGeneList  = new NeuronGeneList(_inputNeuronCount); // includes single bias neuron.
            NeuronGeneList outputNeuronGeneList = new NeuronGeneList(_outputNeuronCount);

            // Create a single bias neuron.
            uint biasNeuronId = _innovationIdGenerator.NextId;

            if (0 != biasNeuronId)
            {   // The ID generator must be reset before calling this method so that all generated genomes use the
                // same innovation ID for matching neurons and structures.
                throw new SharpNeatException("IdGenerator must be reset before calling CreateGenome(uint)");
            }

            // Note. Genes within nGeneList must always be arranged according to the following layout plan.
            //   Bias - single neuron. Innovation ID = 0
            //   Input neurons.
            //   Output neurons.
            //   Hidden neurons.
            NeuronGene neuronGene = CreateNeuronGene(biasNeuronId, NodeType.Bias);

            inputNeuronGeneList.Add(neuronGene);
            neuronGeneList.Add(neuronGene);

            // Create input neuron genes.
            for (int i = 0; i < _inputNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Input);
                inputNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Create output neuron genes.
            for (int i = 0; i < _outputNeuronCount; i++)
            {
                neuronGene = CreateNeuronGene(_innovationIdGenerator.NextId, NodeType.Output);
                outputNeuronGeneList.Add(neuronGene);
                neuronGeneList.Add(neuronGene);
            }

            // Define all possible connections between the input and output neurons (fully interconnected).
            int srcCount = inputNeuronGeneList.Count;
            int tgtCount = outputNeuronGeneList.Count;

            ConnectionDefinition[] connectionDefArr = new ConnectionDefinition[srcCount * tgtCount];

            for (int srcIdx = 0, i = 0; srcIdx < srcCount; srcIdx++)
            {
                for (int tgtIdx = 0; tgtIdx < tgtCount; tgtIdx++)
                {
                    connectionDefArr[i++] = new ConnectionDefinition(_innovationIdGenerator.NextId, srcIdx, tgtIdx);
                }
            }

            // Shuffle the array of possible connections.
            SortUtils.Shuffle(connectionDefArr, _rng);

            // Select connection definitions from the head of the list and convert them to real connections.
            // We want some proportion of all possible connections but at least one (Connectionless genomes are not allowed).
            int connectionCount = (int)NumericsUtils.ProbabilisticRound(
                (double)connectionDefArr.Length * _neatGenomeParamsComplexifying.InitialInterconnectionsProportion,
                _rng);

            connectionCount = Math.Max(1, connectionCount);

            // Create the connection gene list and populate it.
            ConnectionGeneList connectionGeneList = new ConnectionGeneList(connectionCount);

            for (int i = 0; i < connectionCount; i++)
            {
                ConnectionDefinition def           = connectionDefArr[i];
                NeuronGene           srcNeuronGene = inputNeuronGeneList[def._sourceNeuronIdx];
                NeuronGene           tgtNeuronGene = outputNeuronGeneList[def._targetNeuronIdx];

                ConnectionGene cGene = new ConnectionGene(def._innovationId,
                                                          srcNeuronGene.InnovationId,
                                                          tgtNeuronGene.InnovationId,
                                                          GenerateRandomConnectionWeight());
                connectionGeneList.Add(cGene);

                // Register connection with endpoint neurons.
                srcNeuronGene.TargetNeurons.Add(cGene.TargetNodeId);
                tgtNeuronGene.SourceNeurons.Add(cGene.SourceNodeId);
            }

            // Ensure connections are sorted.
            connectionGeneList.SortByInnovationId();

            // Create and return the completed genome object.
            return(CreateGenome(_genomeIdGenerator.NextId, birthGeneration,
                                neuronGeneList, connectionGeneList,
                                _inputNeuronCount, _outputNeuronCount, false));
        }
Esempio n. 4
0
        /// <summary>
        /// Reads a NeatGenome from XML.
        /// </summary>
        /// <param name="xr">The XmlReader to read from.</param>
        /// <param name="nodeFnIds">Indicates if node activation function IDs
        /// should be read. They are required for HyperNEAT genomes but not for NEAT</param>
        public static NeatGenome ReadGenome(XmlReader xr, bool nodeFnIds)
        {
            // Find <Network>.
            XmlIoUtils.MoveToElement(xr, false, __ElemNetwork);
            int initialDepth = xr.Depth;

            // Read genome ID attribute if present. Otherwise default to zero;
            // it's the caller's responsibility to check IDs are unique and
            // in-line with the genome factory's ID generators.
            string genomeIdStr = xr.GetAttribute(__AttrId);
            uint   genomeId;

            uint.TryParse(genomeIdStr, out genomeId);

            // Read birthGeneration attribute if present. Otherwise default to zero.
            string birthGenStr = xr.GetAttribute(__AttrBirthGeneration);
            uint   birthGen;

            uint.TryParse(birthGenStr, out birthGen);

            // Read fitness attribute if present. Otherwise default to zero.
            string fitnessStr = xr.GetAttribute(__AttrFitness);
            double fitness;

            double.TryParse(fitnessStr, out fitness);

            // Find <Nodes>.
            XmlIoUtils.MoveToElement(xr, true, __ElemNodes);

            // Create a reader over the <Nodes> sub-tree.
            int inputNodeCount  = 0;
            int outputNodeCount = 0;
            int regulatoryCount = 0;
            int localInCount    = 0;
            int localOutCount   = 0;
            // Used to count local input and output neurons (which are not
            // found in the base module = 0)
            int            activeModule = 1;
            NeuronGeneList nGeneList    = new NeuronGeneList();

            using (XmlReader xrSubtree = xr.ReadSubtree())
            {
                // Re-scan for the root <Nodes> element.
                XmlIoUtils.MoveToElement(xrSubtree, false);

                // Move to first node elem.
                XmlIoUtils.MoveToElement(xrSubtree, true, __ElemNode);

                // Read node elements.
                do
                {
                    NodeType neuronType =
                        NetworkXmlIO.ReadAttributeAsNodeType(xrSubtree, __AttrType);
                    uint id         = XmlIoUtils.ReadAttributeAsUInt(xrSubtree, __AttrId);
                    int  functionId = GetFunctionId(neuronType);
                    int  module     = XmlIoUtils.ReadAttributeAsInt(xrSubtree, __AttrModule);
                    int  pandemonium;
                    // If we have a regulatory neuron, we read its pandemonium label
                    if (neuronType == NodeType.Regulatory)
                    {
                        pandemonium = XmlIoUtils.ReadAttributeAsInt(xrSubtree, __AttrPandemonium);
                    }
                    // Otherwise it is simply -1
                    else
                    {
                        pandemonium = -1;
                    }
                    double[] auxState = null;
                    if (nodeFnIds)
                    {   // Read activation fn ID.
                        functionId = XmlIoUtils.ReadAttributeAsInt(xrSubtree,
                                                                   __AttrActivationFunctionId);

                        // Read aux state as comma seperated list of real values.
                        auxState = XmlIoUtils.ReadAttributeAsDoubleArray(xrSubtree,
                                                                         __AttrAuxState);
                    }

                    NeuronGene nGene = new NeuronGene(id, neuronType, functionId,
                                                      module, pandemonium, auxState);
                    nGeneList.Add(nGene);

                    // Track the number of input and output nodes.
                    switch (neuronType)
                    {
                    case NodeType.Input:
                        ++inputNodeCount;
                        break;

                    case NodeType.Output:
                        ++outputNodeCount;
                        break;

                    case NodeType.Regulatory:
                        ++regulatoryCount;
                        break;

                    case NodeType.Local_Input:
                        if (module == activeModule)
                        {
                            ++localInCount;
                        }
                        else
                        {
                            // Found a new module, discard previous count
                            activeModule  = module;
                            localInCount  = 1;
                            localOutCount = 0;
                        }
                        break;

                    case NodeType.Local_Output:
                        // Here we do not care about the correct module,
                        // because that has been considered in the local input
                        // count (and local input always comes first).
                        ++localOutCount;
                        break;
                    }
                }while(xrSubtree.ReadToNextSibling(__ElemNode));
            }

            // Find <Connections>.
            XmlIoUtils.MoveToElement(xr, false, __ElemConnections);

            // Create a reader over the <Connections> sub-tree.
            ConnectionGeneList cGeneList = new ConnectionGeneList();

            using (XmlReader xrSubtree = xr.ReadSubtree())
            {
                // Re-scan for the root <Connections> element.
                XmlIoUtils.MoveToElement(xrSubtree, false);

                // Move to first connection elem.
                string localName = XmlIoUtils.MoveToElement(xrSubtree, true);
                if (localName == __ElemConnection)
                {   // We have at least one connection.
                    // Read connection elements.
                    do
                    {
                        uint           id      = XmlIoUtils.ReadAttributeAsUInt(xrSubtree, __AttrId);
                        uint           srcId   = XmlIoUtils.ReadAttributeAsUInt(xrSubtree, __AttrSourceId);
                        uint           tgtId   = XmlIoUtils.ReadAttributeAsUInt(xrSubtree, __AttrTargetId);
                        double         weight  = XmlIoUtils.ReadAttributeAsDouble(xrSubtree, __AttrWeight);
                        int            module  = XmlIoUtils.ReadAttributeAsInt(xrSubtree, __AttrModule);
                        bool           protect = XmlIoUtils.ReadAttributeAsBool(xrSubtree, __AttrProtected);
                        ConnectionGene cGene   = new ConnectionGene(id, srcId, tgtId,
                                                                    weight, module,
                                                                    protect);
                        cGeneList.Add(cGene);
                    }while(xrSubtree.ReadToNextSibling(__ElemConnection));
                }
            }

            // Move the reader beyond the closing tags </Connections> and </Network>.
            do
            {
                if (xr.Depth <= initialDepth)
                {
                    break;
                }
            }while(xr.Read());

            // Construct and return loaded NeatGenome. We construct it first
            // so we can access its properties before leaving.
            bool rebuildConnectivity = true;
            // Integrity will fail if we attempt to create the genome before
            // updating some of the statistics (counts for each type of neurons,
            // etc). It can be done after that step!
            bool       shouldAssertIntegrity = false;
            NeatGenome genome = new NeatGenome(null, genomeId, birthGen, nGeneList,
                                               cGeneList, rebuildConnectivity,
                                               shouldAssertIntegrity);

            if (genomeFactory != null)
            {
                // Note genomeFactory is not fully initialized yet, but it is needed to create
                // an EvaluationInfo structure.
                genome.GenomeFactory = genomeFactory;
                genome.EvaluationInfo.SetFitness(fitness);
            }

            // We update count variables. While it is true most are static
            // variables, loading genomes is done only once, so we can afford
            // to count them for each genome.
            genome.Input      = inputNodeCount;
            genome.Output     = outputNodeCount;
            genome.Regulatory = regulatoryCount;
            genome.LocalIn    = localInCount;
            genome.LocalOut   = localOutCount;
            // We use base for neurons InHiddenModules
            genome.NeuronGeneList.LocateLastBase();
            genome.InHiddenModulesFromLoad();
            genome.ActiveConnectionsFromLoad();

            // Before this was done only once after creating all genomes. However,
            // we need these values if we want to perform an integrity check.
            // The performance overhead is negligible (specially in a one-time method)
            // and reliability is increased this way.
            genome.NeuronGeneList.LocateLastBase();
            genome.NeuronGeneList.LocateFirstIndex();
            genome.ConnectionGeneList.LocateFirstId();

            Debug.Assert(genome.PerformIntegrityCheck());
            return(genome);
        }
        /// <summary>
        /// Reads a NeatGenome from XML.
        /// </summary>
        /// <param name="xr">The XmlReader to read from.</param>
        /// <param name="nodeFnIds">Indicates if node activation function IDs should be read. They are required
        /// for HyperNEAT genomes but not for NEAT</param>
        public static NeatGenome ReadGenome(XmlReader xr, bool nodeFnIds)
        {
            // Find <Network>.
            XmlIoUtils.MoveToElement(xr, false, __ElemNetwork);
            int initialDepth = xr.Depth;

            // Read genome ID attribute if present. Otherwise default to zero; it's the caller's responsibility to
            // check IDs are unique and in-line with the genome factory's ID generators.
            string genomeIdStr = xr.GetAttribute(__AttrId);
            uint   genomeId;

            uint.TryParse(genomeIdStr, out genomeId);

            // Read birthGeneration attribute if present. Otherwise default to zero.
            string birthGenStr = xr.GetAttribute(__AttrBirthGeneration);
            uint   birthGen;

            uint.TryParse(birthGenStr, out birthGen);

            // Find <Nodes>.
            XmlIoUtils.MoveToElement(xr, true, __ElemNodes);

            // Create a reader over the <Nodes> sub-tree.
            int            inputNodeCount  = 0;
            int            outputNodeCount = 0;
            NeuronGeneList nGeneList       = new NeuronGeneList();

            using (XmlReader xrSubtree = xr.ReadSubtree())
            {
                // Re-scan for the root <Nodes> element.
                XmlIoUtils.MoveToElement(xrSubtree, false);

                // Move to first node elem.
                XmlIoUtils.MoveToElement(xrSubtree, true, __ElemNode);

                // Read node elements.
                do
                {
                    NodeType neuronType = NetworkXmlIO.ReadAttributeAsNodeType(xrSubtree, __AttrType);
                    uint     id         = XmlIoUtils.ReadAttributeAsUInt(xrSubtree, __AttrId);
                    int      functionId = 0;
                    double[] auxState   = null;
                    if (nodeFnIds)
                    {   // Read activation fn ID.
                        functionId = XmlIoUtils.ReadAttributeAsInt(xrSubtree, __AttrActivationFunctionId);

                        // Read aux state as comma separated list of real values.
                        auxState = XmlIoUtils.ReadAttributeAsDoubleArray(xrSubtree, __AttrAuxState);
                    }

                    NeuronGene nGene = new NeuronGene(id, neuronType, functionId, auxState);
                    nGeneList.Add(nGene);

                    // Track the number of input and output nodes.
                    switch (neuronType)
                    {
                    case NodeType.Input:
                        inputNodeCount++;
                        break;

                    case NodeType.Output:
                        outputNodeCount++;
                        break;
                    }
                }while(xrSubtree.ReadToNextSibling(__ElemNode));
            }

            // Find <Connections>.
            XmlIoUtils.MoveToElement(xr, false, __ElemConnections);

            // Create a reader over the <Connections> sub-tree.
            ConnectionGeneList cGeneList = new ConnectionGeneList();

            using (XmlReader xrSubtree = xr.ReadSubtree())
            {
                // Re-scan for the root <Connections> element.
                XmlIoUtils.MoveToElement(xrSubtree, false);

                // Move to first connection elem.
                string localName = XmlIoUtils.MoveToElement(xrSubtree, true);
                if (localName == __ElemConnection)
                {   // We have at least one connection.
                    // Read connection elements.
                    do
                    {
                        uint           id     = XmlIoUtils.ReadAttributeAsUInt(xrSubtree, __AttrId);
                        uint           srcId  = XmlIoUtils.ReadAttributeAsUInt(xrSubtree, __AttrSourceId);
                        uint           tgtId  = XmlIoUtils.ReadAttributeAsUInt(xrSubtree, __AttrTargetId);
                        double         weight = XmlIoUtils.ReadAttributeAsDouble(xrSubtree, __AttrWeight);
                        ConnectionGene cGene  = new ConnectionGene(id, srcId, tgtId, weight);
                        cGeneList.Add(cGene);
                    }while(xrSubtree.ReadToNextSibling(__ElemConnection));
                }
            }

            // Move the reader beyond the closing tags </Connections> and </Network>.
            do
            {
                if (xr.Depth <= initialDepth)
                {
                    break;
                }
            }while(xr.Read());

            // Construct and return loaded NeatGenome.
            return(new NeatGenome(null, genomeId, birthGen, nGeneList, cGeneList, inputNodeCount, outputNodeCount, true));
        }