Esempio n. 1
0
 private NeuroWeight(NeuroWeight <T> other)
 {
     Weight   = other.Weight.CloneMatrix();
     Gradient = other.Gradient.CloneMatrix();
     Cache1   = other.Cache1.CloneMatrix();
     Cache2   = other.Cache2.CloneMatrix();
     CacheM   = other.CacheM.CloneMatrix();
     Timestep = other.Timestep;
 }
Esempio n. 2
0
        public static NeuroWeight <T> Load(Stream stream)
        {
            var result = new NeuroWeight <T>();

            using (var reader = new BinaryReader(stream, Encoding.UTF8, true))
            {
                result.Weight = MatrixFactory.Load <T>(stream);
                bool saveCache = reader.ReadBoolean();
                bool saveGrad  = reader.ReadBoolean();

                if (saveCache)
                {
                    result.Cache1   = MatrixFactory.Load <T>(stream);
                    result.Cache2   = MatrixFactory.Load <T>(stream);
                    result.CacheM   = MatrixFactory.Load <T>(stream);
                    result.Timestep = reader.ReadInt32();
                }
                else
                {
                    result.Cache1 = Matrix <T> .Build.Dense(result.Weight.RowCount, result.Weight.ColumnCount);

                    result.Cache2 = Matrix <T> .Build.Dense(result.Weight.RowCount, result.Weight.ColumnCount);

                    result.CacheM = Matrix <T> .Build.Dense(result.Weight.RowCount, result.Weight.ColumnCount);
                }
                if (saveGrad)
                {
                    result.Gradient = MatrixFactory.Load <T>(stream);
                }
                else
                {
                    result.Gradient = Matrix <T> .Build.Dense(result.Weight.RowCount, result.Weight.ColumnCount);
                }
            }

            return(result);
        }