Esempio n. 1
0
        protected void Run(string[] args)
        {
            Console.WriteLine("WISER-RecSys começou");

            options = new OptionSet() {
                // string-valued options
                 { "arquivo=",            v              => arquivo             = v },
                { "measures=",            v              => measures             = v },
                { "recommender-options=", v              => recommender_options += " " + v },
                { "help",                 v => show_help         = v != null },

            };

            eval_measures = ItemRecommendationEvaluationResults.DefaultMeasuresToShow;

            IList<string> extra_args = options.Parse(args);

            if (show_help)
                Usage(0);

            //eval
            if (measures != null)
                eval_measures = measures.Split(' ', ',');

            //Rodar o de vocs

            //
            training_file = "training.data";
            test_file = "test.data";
            training_partial_file = "training.partial.data";
            test_partial_file = "test.partial.data";

            for (int i = 0; i < arquivos.Length; i++)
            {

                MyMediaLite.Random.Seed = 1;

                item_attributes_file = "movie_" + arquivos[i] + ".dat_saida";

                user_mapping.Add(new Mapping());
                item_mapping.Add(new Mapping());

                //Setup recommender
                recommenders.Add("BPRMFAttr".CreateItemRecommender());
                recommenders[i].Configure(recommender_options, (string msg) =>
                {
                    Console.Error.WriteLine(msg); Environment.Exit(-1);
                });

                // item attributes
                if (recommenders[i] is IItemAttributeAwareRecommender && item_attributes_file == null)
                    Abort("Recommender expects --item-attributes=FILE.");

                if (item_attributes_file != null)
                    item_attributes.Add(AttributeData.Read(item_attributes_file, item_mapping[i]));
                if (recommenders[i] is IItemAttributeAwareRecommender)
                    ((IItemAttributeAwareRecommender)recommenders[i]).ItemAttributes = item_attributes[i];

                IBooleanMatrix lista_vazia = new SparseBooleanMatrix();
                if (recommenders[i] is IUserAttributeAwareRecommender)
                    ((IUserAttributeAwareRecommender)recommenders[i]).UserAttributes = lista_vazia;

                // training data
                training_data.Add(ItemData.Read(training_file, user_mapping[i], item_mapping[i], false));

                test_data.Add(ItemData.Read(test_file, user_mapping[i], item_mapping[i], false));

                test_users.Add(test_data[i].AllUsers);

                //Probe

                training_probe_data.Add(ItemData.Read(training_partial_file, user_mapping[i], item_mapping[i], false));
                test_probe_data.Add(ItemData.Read(test_partial_file, user_mapping[i], item_mapping[i], false));

                if (recommenders[i] is MyMediaLite.ItemRecommendation.ItemRecommender)
                    ((ItemRecommender)recommenders[i]).Feedback = training_probe_data[i];

                //Trainar
                Console.WriteLine("Vamos ao probe training");
                var train_time_span = Wrap.MeasureTime(delegate () { recommenders[i].Train(); });
                Console.WriteLine("training_time " + train_time_span + " ");

            }

            Evaluation evaluation = new Evaluation(recommenders, test_probe_data, training_probe_data);

            //Probe learn
            Console.WriteLine("Probe learn started");
            TimeSpan time_span = Wrap.MeasureTime(delegate () { evaluation.EvaluateProbe(test_users, user_mapping, item_mapping); });
            Console.WriteLine(" Probe learn time: " + time_span);

            for (int i = 0; i < arquivos.Length; i++)
            {

                MyMediaLite.Random.Seed = 1;

                item_attributes_file = "movie_" + arquivos[i] + ".dat_saida";

                //Setup recommender
                recommenders[i] = "BPRMFAttr".CreateItemRecommender();
                recommenders[i].Configure(recommender_options, (string msg) => { Console.Error.WriteLine(msg); Environment.Exit(-1); });

                // item attributes
                if (recommenders[i] is IItemAttributeAwareRecommender && item_attributes_file == null)
                    Abort("Recommender expects --item-attributes=FILE.");

                if (recommenders[i] is IItemAttributeAwareRecommender)
                    ((IItemAttributeAwareRecommender)recommenders[i]).ItemAttributes = item_attributes[i];

                IBooleanMatrix lista_vazia = new SparseBooleanMatrix();
                if (recommenders[i] is IUserAttributeAwareRecommender)
                    ((IUserAttributeAwareRecommender)recommenders[i]).UserAttributes = lista_vazia;

                if (recommenders[i] is MyMediaLite.ItemRecommendation.ItemRecommender)
                    ((ItemRecommender)recommenders[i]).Feedback = training_data[i];

                //Trainar
                Console.WriteLine("Agora ao treino normal");
                var train_time_span = Wrap.MeasureTime(delegate () { recommenders[i].Train(); });
                Console.WriteLine("training_time " + train_time_span + " ");

            }

            var results = evaluation.Evaluate(test_data, training_data, test_users, user_mapping, item_mapping);

            foreach (EvaluationResults result in results)
            {
                Console.WriteLine(result.ToString());
            }

            Console.WriteLine("Press any key to continue...");
            Console.ReadKey();
        }
Esempio n. 2
0
        protected void Run(string[] args)
        {
            Console.WriteLine("WISER-RecSys começou");

            options = new OptionSet()
            {
                // string-valued options
                { "arquivo=", v => arquivo = v },
                { "measures=", v => measures = v },
                { "recommender-options=", v => recommender_options += " " + v },
                { "help", v => show_help = v != null },
            };

            eval_measures = ItemRecommendationEvaluationResults.DefaultMeasuresToShow;

            IList <string> extra_args = options.Parse(args);

            if (show_help)
            {
                Usage(0);
            }


            //eval
            if (measures != null)
            {
                eval_measures = measures.Split(' ', ',');
            }



            //Rodar o de vocs



            //
            training_file         = "training.data";
            test_file             = "test.data";
            training_partial_file = "training.partial.data";
            test_partial_file     = "test.partial.data";



            for (int i = 0; i < arquivos.Length; i++)
            {
                MyMediaLite.Random.Seed = 1;


                item_attributes_file = "movie_" + arquivos[i] + ".dat_saida";


                user_mapping.Add(new Mapping());
                item_mapping.Add(new Mapping());



                //Setup recommender
                recommenders.Add("BPRMFAttr".CreateItemRecommender());
                recommenders[i].Configure(recommender_options, (string msg) =>
                {
                    Console.Error.WriteLine(msg); Environment.Exit(-1);
                });


                // item attributes
                if (recommenders[i] is IItemAttributeAwareRecommender && item_attributes_file == null)
                {
                    Abort("Recommender expects --item-attributes=FILE.");
                }


                if (item_attributes_file != null)
                {
                    item_attributes.Add(AttributeData.Read(item_attributes_file, item_mapping[i]));
                }
                if (recommenders[i] is IItemAttributeAwareRecommender)
                {
                    ((IItemAttributeAwareRecommender)recommenders[i]).ItemAttributes = item_attributes[i];
                }


                IBooleanMatrix lista_vazia = new SparseBooleanMatrix();
                if (recommenders[i] is IUserAttributeAwareRecommender)
                {
                    ((IUserAttributeAwareRecommender)recommenders[i]).UserAttributes = lista_vazia;
                }


                // training data
                training_data.Add(ItemData.Read(training_file, user_mapping[i], item_mapping[i], false));

                test_data.Add(ItemData.Read(test_file, user_mapping[i], item_mapping[i], false));


                test_users.Add(test_data[i].AllUsers);


                //Probe

                training_probe_data.Add(ItemData.Read(training_partial_file, user_mapping[i], item_mapping[i], false));
                test_probe_data.Add(ItemData.Read(test_partial_file, user_mapping[i], item_mapping[i], false));


                if (recommenders[i] is MyMediaLite.ItemRecommendation.ItemRecommender)
                {
                    ((ItemRecommender)recommenders[i]).Feedback = training_probe_data[i];
                }


                //Trainar
                Console.WriteLine("Vamos ao probe training");
                var train_time_span = Wrap.MeasureTime(delegate() { recommenders[i].Train(); });
                Console.WriteLine("training_time " + train_time_span + " ");
            }

            Evaluation evaluation = new Evaluation(recommenders, test_probe_data, training_probe_data);

            //Probe learn
            Console.WriteLine("Probe learn started");
            TimeSpan time_span = Wrap.MeasureTime(delegate() { evaluation.EvaluateProbe(test_users, user_mapping, item_mapping); });

            Console.WriteLine(" Probe learn time: " + time_span);


            for (int i = 0; i < arquivos.Length; i++)
            {
                MyMediaLite.Random.Seed = 1;


                item_attributes_file = "movie_" + arquivos[i] + ".dat_saida";


                //Setup recommender
                recommenders[i] = "BPRMFAttr".CreateItemRecommender();
                recommenders[i].Configure(recommender_options, (string msg) => { Console.Error.WriteLine(msg); Environment.Exit(-1); });


                // item attributes
                if (recommenders[i] is IItemAttributeAwareRecommender && item_attributes_file == null)
                {
                    Abort("Recommender expects --item-attributes=FILE.");
                }


                if (recommenders[i] is IItemAttributeAwareRecommender)
                {
                    ((IItemAttributeAwareRecommender)recommenders[i]).ItemAttributes = item_attributes[i];
                }


                IBooleanMatrix lista_vazia = new SparseBooleanMatrix();
                if (recommenders[i] is IUserAttributeAwareRecommender)
                {
                    ((IUserAttributeAwareRecommender)recommenders[i]).UserAttributes = lista_vazia;
                }


                if (recommenders[i] is MyMediaLite.ItemRecommendation.ItemRecommender)
                {
                    ((ItemRecommender)recommenders[i]).Feedback = training_data[i];
                }



                //Trainar
                Console.WriteLine("Agora ao treino normal");
                var train_time_span = Wrap.MeasureTime(delegate() { recommenders[i].Train(); });
                Console.WriteLine("training_time " + train_time_span + " ");
            }



            var results = evaluation.Evaluate(test_data, training_data, test_users, user_mapping, item_mapping);

            foreach (EvaluationResults result in results)
            {
                Console.WriteLine(result.ToString());
            }

            Console.WriteLine("Press any key to continue...");
            Console.ReadKey();
        }