Esempio n. 1
0
        /// <summary>
        /// Process a given sequence by bi-directional recurrent neural network and CRF
        /// </summary>
        /// <param name="pSequence"></param>
        /// <param name="runningMode"></param>
        /// <returns></returns>
        public override int[] ProcessSequenceCRF(Sequence pSequence, RunningMode runningMode)
        {
            //Reset the network
            int numStates = pSequence.States.Length;
            List<SimpleLayer[]> layerList;
            Matrix<double> rawOutputLayer;

            SimpleLayer[] seqOutput = ComputeLayers(pSequence, runningMode == RunningMode.Train, out layerList, out rawOutputLayer);

            ForwardBackward(numStates, rawOutputLayer);

            if (runningMode != RunningMode.Test)
            {
                //Merge forward and backward
                for (int curState = 0; curState < numStates; curState++)
                {
                    logp += Math.Log10(CRFSeqOutput[curState][pSequence.States[curState].Label] + 0.0001);
                }
            }

            int[] predict = Viterbi(rawOutputLayer, numStates);

            if (runningMode == RunningMode.Train)
            {
                UpdateBigramTransition(pSequence);

                List<double[][]> fErrLayers;
                List<double[][]> bErrLayers;
                ComputeDeepErr(pSequence, seqOutput, out fErrLayers, out bErrLayers, true);
                DeepLearningNet(pSequence, seqOutput, fErrLayers, bErrLayers, layerList);
            }

            return predict;
        }
Esempio n. 2
0
        /// <summary>
        /// Compute the output of bottom layer
        /// </summary>
        /// <param name="pSequence"></param>
        /// <param name="forwardLayer"></param>
        /// <param name="backwardLayer"></param>
        /// <returns></returns>
        private SimpleLayer[] ComputeBottomLayer(Sequence pSequence, SimpleLayer forwardLayer, SimpleLayer backwardLayer)
        {
            int numStates = pSequence.States.Length;
            SimpleLayer[] mForward = null;
            SimpleLayer[] mBackward = null;
            Parallel.Invoke(() =>
            {
                //Computing forward RNN
                forwardLayer.netReset(false);
                mForward = new SimpleLayer[numStates];
                for (int curState = 0; curState < numStates; curState++)
                {
                    State state = pSequence.States[curState];
                    SetInputLayer(state, curState, numStates, null);
                    forwardLayer.computeLayer(state.SparseData, state.DenseData.CopyTo());
                    mForward[curState] = forwardLayer.GetHiddenLayer();
                }
            },
             () =>
             {
                 //Computing backward RNN
                 backwardLayer.netReset(false);
                 mBackward = new SimpleLayer[numStates];
                 for (int curState = numStates - 1; curState >= 0; curState--)
                 {
                     State state = pSequence.States[curState];
                     SetInputLayer(state, curState, numStates, null, false);
                     backwardLayer.computeLayer(state.SparseData, state.DenseData.CopyTo());      //compute probability distribution

                     mBackward[curState] = backwardLayer.GetHiddenLayer();
                 }
             });

            SimpleLayer[] mergedLayer = new SimpleLayer[numStates];
            Parallel.For(0, numStates, parallelOption, curState =>
            {
                State state = pSequence.States[curState];

                mergedLayer[curState] = new SimpleLayer(forwardLayer.LayerSize);
                mergedLayer[curState].SparseFeature = state.SparseData;
                mergedLayer[curState].DenseFeature = state.DenseData.CopyTo();

                SimpleLayer forwardCells = mForward[curState];
                SimpleLayer backwardCells = mBackward[curState];

                int i = 0;
                while (i < forwardLayer.LayerSize - Vector<double>.Count)
                {
                    Vector<double> v1 = new Vector<double>(forwardCells.cellOutput, i);
                    Vector<double> v2 = new Vector<double>(backwardCells.cellOutput, i);
                    Vector<double> v = (v1 + v2) / vecConst2;

                    v.CopyTo(mergedLayer[curState].cellOutput, i);

                    i += Vector<float>.Count;
                }

                while (i < forwardLayer.LayerSize)
                {
                    mergedLayer[curState].cellOutput[i] = (forwardCells.cellOutput[i] + backwardCells.cellOutput[i]) / 2.0;
                    i++;
                }
            });

            return mergedLayer;
        }
Esempio n. 3
0
        public override int[] PredictSentenceCRF(Sequence pSequence, RunningMode runningMode)
        {
            //Reset the network
            int numStates = pSequence.States.Length;
            //Predict output
            Matrix<neuron> mergedHiddenLayer = null;
            Matrix<double> rawOutputLayer = null;
            neuron[][] seqOutput = InnerDecode(pSequence, out mergedHiddenLayer, out rawOutputLayer);

            ForwardBackward(numStates, rawOutputLayer);

            if (runningMode != RunningMode.Test)
            {
                //Get the best result
                for (int i = 0; i < numStates; i++)
                {
                    logp += Math.Log10(CRFSeqOutput[i][pSequence.States[i].Label]);
                }
            }

            int[] predict = Viterbi(rawOutputLayer, numStates);

            if (runningMode == RunningMode.Train)
            {
                UpdateBigramTransition(pSequence);

                //Update hidden-output layer weights
                for (int curState = 0; curState < numStates; curState++)
                {
                    int label = pSequence.States[curState].Label;
                    //For standard RNN
                    for (int c = 0; c < L2; c++)
                    {
                        seqOutput[curState][c].er = -CRFSeqOutput[curState][c];
                    }
                    seqOutput[curState][label].er = 1 - CRFSeqOutput[curState][label];
                }

                LearnTwoRNN(pSequence, mergedHiddenLayer, seqOutput);
            }

            return predict;
        }
Esempio n. 4
0
        /// <summary>
        /// Process a given sequence by bi-directional recurrent neural network
        /// </summary>
        /// <param name="pSequence"></param>
        /// <param name="runningMode"></param>
        /// <returns></returns>
        public override Matrix<double> ProcessSequence(Sequence pSequence, RunningMode runningMode)
        {
            List<SimpleLayer[]> layerList;
            Matrix<double> rawOutputLayer;

            //Forward process from bottom layer to top layer
            SimpleLayer[] seqOutput = ComputeLayers(pSequence, runningMode == RunningMode.Train, out layerList, out rawOutputLayer);
            if (runningMode != RunningMode.Test)
            {
                int numStates = pSequence.States.Length;
                for (int curState = 0; curState < numStates; curState++)
                {
                    logp += Math.Log10(seqOutput[curState].cellOutput[pSequence.States[curState].Label] + 0.0001);
                }
            }

            if (runningMode == RunningMode.Train)
            {
                //In training mode, we calculate each layer's error and update their net weights
                List<double[][]> fErrLayers;
                List<double[][]> bErrLayers;
                ComputeDeepErr(pSequence, seqOutput, out fErrLayers, out bErrLayers);
                DeepLearningNet(pSequence, seqOutput, fErrLayers, bErrLayers, layerList);
            }

            return rawOutputLayer;
        }
Esempio n. 5
0
        public Sequence ExtractFeatures(Sentence sentence)
        {
            int n = sentence.TokensList.Count;
            Sequence sequence = new Sequence(n);

            //For each token, get its sparse and dense feature set according configuration and training corpus
            for (int i = 0; i < n; i++)
            {
                State state = sequence.States[i];
                ExtractSparseFeature(i, n, sentence.TokensList, state);

                state.DenseData = ExtractDenseFeature(i, n, sentence.TokensList);
            }

            return sequence;
        }
Esempio n. 6
0
        public override int[] PredictSentence(Sequence pSequence)
        {
            //Reset the network
            int numStates = pSequence.GetSize();
            int[] predicted = new int[numStates];

            //Predict output
            Matrix m = InnerDecode(pSequence);

            //Merge forward and backward
            for (int curState = 0; curState < numStates; curState++)
            {
                State state = pSequence.Get(curState);
                //activation 2   --softmax on words
                double sum = 0;   //sum is used for normalization: it's better to have larger precision as many numbers are summed together here
                for (int c = 0; c < forwardRNN.L2; c++)
                {
                    if (m[curState][c] > 50) m[curState][c] = 50;  //for numerical stability
                    if (m[curState][c] < -50) m[curState][c] = -50;  //for numerical stability
                    double val = Math.Exp(m[curState][c]);
                    sum += val;
                    m[curState][c] = val;
                }

                for (int c = 0; c < forwardRNN.L2; c++)
                {
                    m[curState][c] /= sum;
                }

                logp += Math.Log10(m[curState][state.GetLabel()]);
                counter++;

                predicted[curState] = GetBestOutputIndex(m, curState);
            }

            netReset();

            double[] output = new double[L2];
            //Learn forward network
            for (int curState = 0; curState < numStates; curState++)
            {
                // error propogation
                State state = pSequence.Get(curState);
                forwardRNN.setInputLayer(state, curState, numStates, predicted_fnn);
                forwardRNN.computeNet(state, output);      //compute probability distribution

                //Copy output result to forward net work's output
                for (int i = 0; i < forwardRNN.L2; i++)
                {
                    forwardRNN.neuOutput[i].ac = m[curState][i];
                }

                forwardRNN.learnNet(state, curState);
                forwardRNN.LearnBackTime(state, numStates, curState);
                forwardRNN.copyHiddenLayerToInput();
            }

            for (int curState = numStates - 1; curState >= 0; curState--)
            {
                // error propogation
                State state = pSequence.Get(curState);
                backwardRNN.setInputLayer(state, curState, numStates, predicted_bnn, false);
                backwardRNN.computeNet(state, output);      //compute probability distribution

                //Copy output result to forward net work's output
                for (int i = 0; i < backwardRNN.L2; i++)
                {
                    backwardRNN.neuOutput[i].ac = m[curState][i];
                }

                backwardRNN.learnNet(state, curState);
                backwardRNN.LearnBackTime(state, numStates, curState);
                backwardRNN.copyHiddenLayerToInput();
            }

            return predicted;
        }
Esempio n. 7
0
 public abstract int[] ProcessSequenceCRF(Sequence pSequence, RunningMode runningMode);
Esempio n. 8
0
        private void DeepLearningNet(Sequence pSequence, SimpleLayer[] seqOutput, List<double[][]> fErrLayers, 
            List<double[][]> bErrLayers, List<SimpleLayer[]> layerList)
        {
            int numStates = pSequence.States.Length;
            int numLayers = forwardHiddenLayers.Count;

            //Learning output layer
            Parallel.Invoke(() =>
            {
                for (int curState = 0; curState < numStates; curState++)
                {
                    seqOutput[curState].LearnFeatureWeights(numStates, curState);
                }
            },
            () =>
            {
                Parallel.For(0, numLayers, parallelOption, i =>
                {
                    Parallel.Invoke(() =>
                    {
                        SimpleLayer forwardLayer = forwardHiddenLayers[i];
                        forwardLayer.netReset(true);
                        for (int curState = 0; curState < numStates; curState++)
                        {
                            forwardLayer.computeLayer(layerList[i][curState].SparseFeature, layerList[i][curState].DenseFeature, true);
                            forwardLayer.er = fErrLayers[i][curState];
                            forwardLayer.LearnFeatureWeights(numStates, curState);
                        }
                    },
                    () =>
                    {
                        SimpleLayer backwardLayer = backwardHiddenLayers[i];
                        backwardLayer.netReset(true);
                        for (int curState = 0; curState < numStates; curState++)
                        {
                            int curState2 = numStates - curState - 1;
                            backwardLayer.computeLayer(layerList[i][curState2].SparseFeature, layerList[i][curState2].DenseFeature, true);
                            backwardLayer.er = bErrLayers[i][curState2];
                            backwardLayer.LearnFeatureWeights(numStates, curState);
                        }
                    });
                });
            });
        }
Esempio n. 9
0
 public int[] DecodeNN(Sequence seq)
 {
     Matrix<double> ys = ProcessSequence(seq, RunningMode.Test);
     return GetBestResult(ys);
 }
Esempio n. 10
0
 public abstract Matrix<double> ProcessSequence(Sequence pSequence, RunningMode runningMode);
Esempio n. 11
0
        public Sequence ExtractFeatures(Sentence sentence)
        {
            Sequence sequence = new Sequence();
            int n = sentence.GetTokenSize();
            List<string[]> features = sentence.GetFeatureSet();

            //For each token, get its sparse and dense feature set according configuration and training corpus
            sequence.SetSize(n);
            for (int i = 0; i < n; i++)
            {
                State state = sequence.Get(i);
                ExtractSparseFeature(i, n, features, state);

                var spDenseFeature = ExtractDenseFeature(i, n, features);
                state.SetDenseData(spDenseFeature);
            }

            return sequence;
        }
Esempio n. 12
0
        private void LearnTwoRNN(Sequence pSequence, Matrix<neuron> mergedHiddenLayer, neuron[][] seqOutput)
        {
            netReset(true);

            int numStates = pSequence.States.Length;
            forwardRNN.Hidden2OutputWeight = Hidden2OutputWeight.CopyTo();
            backwardRNN.Hidden2OutputWeight = Hidden2OutputWeight.CopyTo();

            Parallel.Invoke(() =>
                {
                    for (int curState = 0; curState < numStates; curState++)
                    {
                        for (int i = 0; i < Hidden2OutputWeight.GetHeight(); i++)
                        {
                            //update weights for hidden to output layer

                            for (int k = 0; k < Hidden2OutputWeight.GetWidth(); k++)
                            {
                                Hidden2OutputWeight[i][k] += LearningRate * mergedHiddenLayer[curState][k].cellOutput * seqOutput[curState][i].er;
                            }
                        }
                    }

                },
                ()=>
            {

                //Learn forward network
                for (int curState = 0; curState < numStates; curState++)
                {
                    // error propogation
                    State state = pSequence.States[curState];
                    forwardRNN.setInputLayer(state, curState, numStates, null);
                    forwardRNN.computeNet(state, null);      //compute probability distribution

                    //Copy output result to forward net work's output
                    forwardRNN.OutputLayer = seqOutput[curState];

                    forwardRNN.learnNet(state, curState, true);
                    forwardRNN.LearnBackTime(state, numStates, curState);
                }
            },
            () =>
            {

                for (int curState = 0; curState < numStates; curState++)
                {
                    int curState2 = numStates - 1 - curState;

                    // error propogation
                    State state2 = pSequence.States[curState2];
                    backwardRNN.setInputLayer(state2, curState2, numStates, null, false);
                    backwardRNN.computeNet(state2, null);      //compute probability distribution

                    //Copy output result to forward net work's output
                    backwardRNN.OutputLayer = seqOutput[curState2];

                    backwardRNN.learnNet(state2, curState2, true);
                    backwardRNN.LearnBackTime(state2, numStates, curState2);
                }
            });
        }
Esempio n. 13
0
        public override Matrix<double> PredictSentence(Sequence pSequence, RunningMode runningMode)
        {
            //Reset the network
            int numStates = pSequence.States.Length;

            //Predict output
            Matrix<neuron> mergedHiddenLayer = null;
            Matrix<double> rawOutputLayer = null;
            neuron[][] seqOutput = InnerDecode(pSequence, out mergedHiddenLayer, out rawOutputLayer);

            if (runningMode != RunningMode.Test)
            {
                //Merge forward and backward
                for (int curState = 0; curState < numStates; curState++)
                {
                    logp += Math.Log10(seqOutput[curState][pSequence.States[curState].Label].cellOutput);
                }
            }

            if (runningMode == RunningMode.Train)
            {
                //Update hidden-output layer weights
                for (int curState = 0; curState < numStates; curState++)
                {
                    int label = pSequence.States[curState].Label;
                    //For standard RNN
                    for (int c = 0; c < L2; c++)
                    {
                        seqOutput[curState][c].er = -seqOutput[curState][c].cellOutput;
                    }
                    seqOutput[curState][label].er = 1 - seqOutput[curState][label].cellOutput;
                }

                LearnTwoRNN(pSequence, mergedHiddenLayer, seqOutput);
            }

            return rawOutputLayer;
        }
Esempio n. 14
0
        /// <summary>
        /// Pass error from the last layer to the first layer
        /// </summary>
        /// <param name="pSequence"></param>
        /// <param name="seqFinalOutput"></param>
        /// <param name="isCRF"></param>
        /// <returns></returns>
        private void ComputeDeepErr(Sequence pSequence, SimpleLayer[] seqFinalOutput, out List<double[][]> fErrLayers, out List<double[][]> bErrLayers, bool isCRF = false)
        {
            int numStates = pSequence.States.Length;
            int numLayers = forwardHiddenLayers.Count;

            //Calculate output layer error
            for (int curState = 0; curState < numStates; curState++)
            {
                int label = pSequence.States[curState].Label;
                SimpleLayer layer = seqFinalOutput[curState];

                if (isCRF == false)
                {
                    for (int c = 0; c < layer.LayerSize; c++)
                    {
                        layer.er[c] = -layer.cellOutput[c];
                    }
                    layer.er[label] = 1.0 - layer.cellOutput[label];
                }
                else
                {
                    double[] CRFOutputLayer = CRFSeqOutput[curState];
                    for (int c = 0; c < layer.LayerSize; c++)
                    {
                        layer.er[c] = -CRFOutputLayer[c];
                    }
                    layer.er[label] = 1 - CRFOutputLayer[label];
                }
            }

            //Now we already have err in output layer, let's pass them back to other layers
            fErrLayers = new List<double[][]>();
            bErrLayers = new List<double[][]>();
            for (int i = 0; i < numLayers; i++)
            {
                fErrLayers.Add(null);
                bErrLayers.Add(null);
            }

            //Pass error from i+1 to i layer
            SimpleLayer forwardLayer = forwardHiddenLayers[numLayers - 1];
            SimpleLayer backwardLayer = backwardHiddenLayers[numLayers - 1];

            double[][] errLayer = new double[numStates][];
            Parallel.For(0, numStates, parallelOption, curState =>
            {
                errLayer[curState] = new double[forwardLayer.LayerSize];
                forwardLayer.ComputeLayerErr(seqFinalOutput[curState], errLayer[curState], seqFinalOutput[curState].er);
            });
            fErrLayers[numLayers - 1] = errLayer;
            bErrLayers[numLayers - 1] = errLayer;

            // Forward
            for (int i = numLayers - 2; i >= 0; i--)
            {
                forwardLayer = forwardHiddenLayers[i];
                errLayer = new double[numStates][];
                double[][] srcErrLayer = fErrLayers[i + 1];
                Parallel.For(0, numStates, parallelOption, curState =>
                {
                    int curState2 = numStates - curState - 1;

                    errLayer[curState2] = new double[forwardLayer.LayerSize];
                    forwardLayer.ComputeLayerErr(forwardHiddenLayers[i + 1], errLayer[curState2], srcErrLayer[curState2]);
                });

                fErrLayers[i] = errLayer;
            }

            // Backward
            for (int i = numLayers - 2; i >= 0; i--)
            {
                backwardLayer = backwardHiddenLayers[i];
                errLayer = new double[numStates][];
                double[][] srcErrLayer = bErrLayers[i + 1];
                Parallel.For(0, numStates, parallelOption, curState =>
                {
                    errLayer[curState] = new double[backwardLayer.LayerSize];
                    backwardLayer.ComputeLayerErr(backwardHiddenLayers[i + 1], errLayer[curState], srcErrLayer[curState]);
                });

                bErrLayers[i] = errLayer;
            }
        }
Esempio n. 15
0
        public void UpdateBigramTransition(Sequence seq)
        {
            int OutputLayerSize = OutputLayer.LayerSize;
            int numStates = seq.States.Length;
            Matrix<double> m_DeltaBigramLM = new Matrix<double>(OutputLayerSize, OutputLayerSize);

            for (int timeat = 1; timeat < numStates; timeat++)
            {
                double[] CRFSeqOutput_timeat = CRFSeqOutput[timeat];
                double[] CRFSeqOutput_pre_timeat = CRFSeqOutput[timeat - 1];
                for (int i = 0; i < OutputLayerSize; i++)
                {
                    double CRFSeqOutput_timeat_i = CRFSeqOutput_timeat[i];
                    double[] CRFTagTransWeights_i = CRFTagTransWeights[i];
                    double[] m_DeltaBigramLM_i = m_DeltaBigramLM[i];
                    int j = 0;

                    Vector<double> vecCRFSeqOutput_timeat_i = new Vector<double>(CRFSeqOutput_timeat_i);
                    while (j < OutputLayerSize - Vector<double>.Count)
                    {
                        Vector<double> v1 = new Vector<double>(CRFTagTransWeights_i, j);
                        Vector<double> v2 = new Vector<double>(CRFSeqOutput_pre_timeat, j);
                        Vector<double> v = new Vector<double>(m_DeltaBigramLM_i, j);

                        v -= (v1 * vecCRFSeqOutput_timeat_i * v2);
                        v.CopyTo(m_DeltaBigramLM_i, j);

                        j += Vector<double>.Count;
                    }

                    while (j < OutputLayerSize)
                    {
                        m_DeltaBigramLM_i[j] -= (CRFTagTransWeights_i[j] * CRFSeqOutput_timeat_i * CRFSeqOutput_pre_timeat[j]);
                        j++;
                    }
                }

                int iTagId = seq.States[timeat].Label;
                int iLastTagId = seq.States[timeat - 1].Label;
                m_DeltaBigramLM[iTagId][iLastTagId] += 1;
            }

            //Update tag Bigram LM
            for (int b = 0; b < OutputLayerSize; b++)
            {
                double[] vector_b = CRFTagTransWeights[b];
                double[] vector_delta_b = m_DeltaBigramLM[b];
                int a = 0;

                while (a < OutputLayerSize - Vector<double>.Count)
                {
                    Vector<double> v1 = new Vector<double>(vector_delta_b, a);
                    Vector<double> v = new Vector<double>(vector_b, a);

                    //Normalize delta
                    v1 = RNNHelper.NormalizeGradient(v1);

                    //Update weights
                    v += RNNHelper.vecNormalLearningRate * v1;
                    v.CopyTo(vector_b, a);

                    a += Vector<double>.Count;
                }

                while (a < OutputLayerSize)
                {
                    vector_b[a] += RNNHelper.LearningRate * RNNHelper.NormalizeGradient(vector_delta_b[a]);
                    a++;
                }
            }
        }
Esempio n. 16
0
        /// <summary>
        /// Computing the output of each layer in the neural network
        /// </summary>
        /// <param name="pSequence"></param>
        /// <param name="isTrain"></param>
        /// <param name="layerList"></param>
        /// <param name="rawOutputLayer"></param>
        /// <returns></returns>
        private SimpleLayer[] ComputeLayers(Sequence pSequence, bool isTrain, out List<SimpleLayer[]> layerList, out Matrix<double> rawOutputLayer)
        {
            layerList = new List<SimpleLayer[]>();

            SimpleLayer[] layer = ComputeBottomLayer(pSequence, forwardHiddenLayers[0], backwardHiddenLayers[0]);
            if (isTrain == true)
            {
                layerList.Add(layer);
            }

            for (int i = 1; i < forwardHiddenLayers.Count; i++)
            {
                layer = ComputeMiddleLayers(layer, forwardHiddenLayers[i], backwardHiddenLayers[i]);
                if (isTrain == true)
                {
                    layerList.Add(layer);
                }
            }

            SimpleLayer[] seqFinalOutput = ComputeTopLayer(layer, out rawOutputLayer, isTrain);
            return seqFinalOutput;
        }
Esempio n. 17
0
        private int GetErrorTokenNum(Sequence seq, int[] predicted)
        {
            int tknErrCnt = 0;
            int numStates = seq.States.Length;
            for (int curState = 0; curState < numStates; curState++)
            {
                if (predicted[curState] != seq.States[curState].Label)
                {
                    tknErrCnt++;
                }
            }

            return tknErrCnt;
        }
Esempio n. 18
0
 public void Add(Sequence sequence)
 {
     m_Data.Add(sequence);
 }
Esempio n. 19
0
 public int[] DecodeCRF(Sequence seq)
 {
     //ys contains the output of RNN for each word
     Matrix<double> ys = ProcessSequence(seq, RunningMode.Test);
     return Viterbi(ys, seq.States.Length);
 }
Esempio n. 20
0
        public override int[] learnSentenceForRNNCRF(Sequence pSequence)
        {
            //Reset the network
            int numStates = pSequence.GetSize();
            int[] predicted = new int[numStates];

            //Predict output
            Matrix m = InnerDecode(pSequence);

            ForwardBackward(numStates, m);
            //Get the best result
            predicted = new int[numStates];
            for (int i = 0; i < numStates; i++)
            {
                State state = pSequence.Get(i);
                logp += Math.Log10(m_Diff[i][state.GetLabel()]);
                counter++;

                predicted[i] = GetBestZIndex(i);
            }

            UpdateBigramTransition(pSequence);

            netReset();

            forwardRNN.m_Diff = m_Diff;
            backwardRNN.m_Diff = m_Diff;

            double[] output_fnn = new double[L2];
            double[] output_bnn = new double[L2];

            Parallel.Invoke(() =>
            {
                //Learn forward network
                for (int curState = 0; curState < numStates; curState++)
                {
                    // error propogation
                    State state = pSequence.Get(curState);
                    forwardRNN.setInputLayer(state, curState, numStates, predicted_fnn);
                    forwardRNN.computeNet(state, output_fnn);      //compute probability distribution

                    forwardRNN.learnNet(state, curState);
                    forwardRNN.LearnBackTime(state, numStates, curState);
                    forwardRNN.copyHiddenLayerToInput();
                }
            },
             () =>
             {
                 for (int curState = numStates - 1; curState >= 0; curState--)
                 {
                     // error propogation
                     State state = pSequence.Get(curState);
                     backwardRNN.setInputLayer(state, curState, numStates, predicted_bnn, false);
                     backwardRNN.computeNet(state, output_bnn);      //compute probability distribution

                     backwardRNN.learnNet(state, curState);
                     backwardRNN.LearnBackTime(state, numStates, curState);
                     backwardRNN.copyHiddenLayerToInput();
                 }
             });

            return predicted;
        }
Esempio n. 21
0
        public int[][] DecodeNBestCRF(Sequence seq, int N)
        {
            //ys contains the output of RNN for each word
            Matrix<double> ys = ProcessSequence(seq, RunningMode.Test);

            int n = seq.States.Length;
            int K = OutputLayer.LayerSize;
            Matrix<double> STP = CRFTagTransWeights;
            PAIR<int, int>[,,] vPath = new PAIR<int, int>[n, K, N];
            int DUMP_LABEL = -1;
            double[,] vPreAlpha = new double[K, N];
            double[,] vAlpha = new double[K, N];

            int nStartTagIndex = 0;
            int nEndTagIndex = 0;
            double MIN_VALUE = double.MinValue;

            //viterbi algorithm
            for (int i = 0; i < K; i++)
            {
                for (int j = 0; j < N; j++)
                {
                    vPreAlpha[i, j] = MIN_VALUE;
                    vPath[0, i, j] = new PAIR<int, int>(DUMP_LABEL, 0);
                }
            }
            vPreAlpha[nStartTagIndex, 0] = ys[0][nStartTagIndex];
            vPath[0, nStartTagIndex, 0].first = nStartTagIndex;

            AdvUtils.PriorityQueue<double, PAIR<int, int>> q = new AdvUtils.PriorityQueue<double, PAIR<int, int>>();

            for (int t = 1; t < n; t++)
            {
                for (int j = 0; j < K; j++)
                {
                    while (q.Count() > 0)
                        q.Dequeue();
                    double _stp = STP[j][0];
                    double _y = ys[t][j];
                    for (int k = 0; k < N; k++)
                    {
                        double score = vPreAlpha[0, k] + _stp + _y;
                        q.Enqueue(score, new PAIR<int, int>(0, k));
                    }
                    for (int i = 1; i < K; i++)
                    {
                        _stp = STP[j][i];
                        for (int k = 0; k < N; k++)
                        {
                            double score = vPreAlpha[i, k] + _stp + _y;
                            if (score <= q.Peek().Key)
                                break;
                            q.Dequeue();
                            q.Enqueue(score, new PAIR<int, int>(i, k));
                        }
                    }
                    int idx = N - 1;
                    while (q.Count() > 0)
                    {
                        vAlpha[j, idx] = q.Peek().Key;
                        vPath[t, j, idx] = q.Peek().Value;
                        idx--;
                        q.Dequeue();
                    }
                }
                vPreAlpha = vAlpha;
                vAlpha = new double[K, N];
            }

            //backtrace to get the n-best result path
            int[][] vTagOutput = new int[N][];
            for (int i = 0; i < N; i++)
            {
                vTagOutput[i] = new int[n];
            }

            for (int k = 0; k < N; k++)
            {
                vTagOutput[k][n - 1] = nEndTagIndex;
                PAIR<int, int> decision = new PAIR<int, int>(nEndTagIndex, k);
                for (int t = n - 2; t >= 0; t--)
                {
                    vTagOutput[k][t] = vPath[t + 1, decision.first, decision.second].first;
                    decision = vPath[t + 1, decision.first, decision.second];
                }
            }

            return vTagOutput;
        }
Esempio n. 22
0
        public override Matrix InnerDecode(Sequence pSequence)
        {
            //Reset the network
            netReset();
            int numStates = pSequence.GetSize();
            predicted_fnn = new int[numStates];
            predicted_bnn = new int[numStates];
            Matrix mForward = new Matrix(numStates, forwardRNN.L2);
            Matrix mBackward = new Matrix(numStates, backwardRNN.L2);

            Parallel.Invoke(() =>
            {
                //Computing forward RNN
                for (int curState = 0; curState < numStates; curState++)
                {
                    State state = pSequence.Get(curState);
                    forwardRNN.setInputLayer(state, curState, numStates, predicted_fnn);
                    forwardRNN.computeNet(state, mForward[curState]);      //compute probability distribution

                    predicted_fnn[curState] = forwardRNN.GetBestOutputIndex();

                    forwardRNN.copyHiddenLayerToInput();
                }
            },
             () =>
             {
                 //Computing backward RNN
                 for (int curState = numStates - 1; curState >= 0; curState--)
                 {
                     State state = pSequence.Get(curState);
                     backwardRNN.setInputLayer(state, curState, numStates, predicted_bnn, false);
                     backwardRNN.computeNet(state, mBackward[curState]);      //compute probability distribution

                     predicted_bnn[curState] = backwardRNN.GetBestOutputIndex();

                     backwardRNN.copyHiddenLayerToInput();
                 }
             });

            //Merge forward and backward
            Matrix m = new Matrix(numStates, forwardRNN.L2);
            for (int curState = 0; curState < numStates; curState++)
            {
                for (int i = 0; i < forwardRNN.L2; i++)
                {
                    m[curState][i] = mForward[curState][i] + mBackward[curState][i];
                }
            }

            return m;
        }
Esempio n. 23
0
        public neuron[][] InnerDecode(Sequence pSequence, out Matrix<neuron> outputHiddenLayer, out Matrix<double> rawOutputLayer)
        {
            int numStates = pSequence.States.Length;
            Matrix<double> mForward = null;
            Matrix<double> mBackward = null;

            //Reset the network
            netReset(false);

            Parallel.Invoke(() =>
            {
                //Computing forward RNN
                mForward = new Matrix<double>(numStates, forwardRNN.L1);
                for (int curState = 0; curState < numStates; curState++)
                {
                    State state = pSequence.States[curState];
                    forwardRNN.setInputLayer(state, curState, numStates, null);
                    forwardRNN.computeNet(state, null);      //compute probability distribution

                    forwardRNN.GetHiddenLayer(mForward, curState);
                }
            },
             () =>
             {
                 //Computing backward RNN
                 mBackward = new Matrix<double>(numStates, backwardRNN.L1);
                 for (int curState = numStates - 1; curState >= 0; curState--)
                 {
                     State state = pSequence.States[curState];
                     backwardRNN.setInputLayer(state, curState, numStates, null, false);
                     backwardRNN.computeNet(state, null);      //compute probability distribution

                     backwardRNN.GetHiddenLayer(mBackward, curState);
                 }
             });

            //Merge forward and backward
            Matrix<neuron> mergedHiddenLayer = new Matrix<neuron>(numStates, forwardRNN.L1);
            Parallel.For(0, numStates, parallelOption, curState =>
            {
                for (int i = 0; i < forwardRNN.L1; i++)
                {
                    mergedHiddenLayer[curState][i].cellOutput = mForward[curState][i] + mBackward[curState][i];
                }
            });

            //Calculate output layer
            Matrix<double> tmp_rawOutputLayer = new Matrix<double>(numStates, L2);
            neuron[][] seqOutput = new neuron[numStates][];
            Parallel.For(0, numStates, parallelOption, curState =>
            {
                seqOutput[curState] = new neuron[L2];
                matrixXvectorADD(seqOutput[curState], mergedHiddenLayer[curState], Hidden2OutputWeight, 0, L2, 0, L1, 0);

                for (int i = 0; i < L2; i++)
                {
                    tmp_rawOutputLayer[curState][i] = seqOutput[curState][i].cellOutput;
                }

                //Activation on output layer
                SoftmaxLayer(seqOutput[curState]);
            });

            outputHiddenLayer = mergedHiddenLayer;
            rawOutputLayer = tmp_rawOutputLayer;

            return seqOutput;
        }