Esempio n. 1
0
 //Methods
 /// <summary>
 /// Adds the next value into the stored time series.
 /// </summary>
 /// <param name="nextValue">The next value to be added.</param>
 public void AddNextValue(double nextValue)
 {
     //Add new value
     _valueCollection.Add(nextValue);
     //Affect next value to existing averages
     Parallel.For(0, _subIntervalLengthCollection.Count, _subIntervalIdx =>
     {
         int intervalLength = _subIntervalLengthCollection[_subIntervalIdx];
         RescaledRange intervalRescaledRange = new RescaledRange(intervalLength);
         for (int valueIdx = (_valueCollection.Count - intervalLength); valueIdx < _valueCollection.Count; valueIdx++)
         {
             intervalRescaledRange.AddValue(_valueCollection[valueIdx]);
         }
         _avgCollection[_subIntervalIdx].AddSample(intervalRescaledRange.Compute());
     });
     return;
 }
Esempio n. 2
0
 /// <summary>
 /// Creates an initialized instance.
 /// </summary>
 /// <param name="timeSeries">The time series data.</param>
 /// <param name="subIntervalLengthCollection">The collection of the lengths of the rescaled range intervals.</param>
 public HurstExpEstim(IEnumerable <double> timeSeries, List <int> subIntervalLengthCollection)
 {
     _valueCollection = timeSeries.ToList();
     //Check the time series length
     if (_valueCollection.Count < MinSubIntervalLength + 1)
     {
         throw new ArgumentException($"Time series is too short. Minimal length is {MinSubIntervalLength + 1}", "timeSeries");
     }
     //Subintervals
     if (subIntervalLengthCollection != null)
     {
         _subIntervalLengthCollection = new List <int>(subIntervalLengthCollection);
     }
     else
     {
         _subIntervalLengthCollection = new List <int>((_valueCollection.Count - MinSubIntervalLength) + 1);
         for (int i = 0, length = MinSubIntervalLength; length <= _valueCollection.Count; i++, length++)
         {
             _subIntervalLengthCollection.Add(length);
         }
     }
     _avgCollection = new List <WeightedAvg>(_subIntervalLengthCollection.Count);
     for (int i = 0; i < _subIntervalLengthCollection.Count; i++)
     {
         _avgCollection.Add(new WeightedAvg());
     }
     Parallel.For(0, _subIntervalLengthCollection.Count, _subIntervalIdx =>
     {
         int intervalLength          = _subIntervalLengthCollection[_subIntervalIdx];
         RescaledRange rescaledRange = new RescaledRange(intervalLength);
         for (int startIdx = 0; startIdx <= _valueCollection.Count - intervalLength; startIdx++)
         {
             rescaledRange.Reset();
             for (int valueSubIdx = 0, timeSeriesIdx = startIdx; valueSubIdx < intervalLength; valueSubIdx++, timeSeriesIdx++)
             {
                 rescaledRange.AddValue(_valueCollection[timeSeriesIdx]);
             }
             _avgCollection[_subIntervalIdx].AddSample(rescaledRange.Compute());
         }
     });
     return;
 }
Esempio n. 3
0
        /// <summary>
        /// Estimates the Hurst Exponent, considering the specified hypothetical next value of the already stored time series.
        /// </summary>
        /// <remarks>
        /// Operation does not change the instance data.
        /// </remarks>
        /// <returns>The resulting linear fit object.</returns>
        public LinearFit ComputeNext(double simValue)
        {
            //Affect the simulated next value into the existing averages
            double[] avgValues = new double[_avgCollection.Count];
            Parallel.For(0, _subIntervalLengthCollection.Count, _subIntervalIdx =>
            {
                int intervalLength = _subIntervalLengthCollection[_subIntervalIdx];
                RescaledRange intervalRescaledRange = new RescaledRange(intervalLength);
                for (int valueIdx = (_valueCollection.Count - intervalLength) + 1; valueIdx < _valueCollection.Count; valueIdx++)
                {
                    intervalRescaledRange.AddValue(_valueCollection[valueIdx]);
                }
                intervalRescaledRange.AddValue(simValue);
                avgValues[_subIntervalIdx] = _avgCollection[_subIntervalIdx].SimulateNext(intervalRescaledRange.Compute());
            });
            //Add updated existing points
            LinearFit linFit = new LinearFit();

            for (int i = 0; i < _avgCollection.Count; i++)
            {
                double x   = Math.Log(_subIntervalLengthCollection[i]);
                double avg = avgValues[i];
                double y   = 0;
                if (avg != 0)
                {
                    y = Math.Log(avg);
                }
                linFit.AddSamplePoint(x, y);
            }
            //Return
            return(linFit);
        }