Esempio n. 1
0
        public Tuple <double, double> DoDeltaCalibration(int numFactors, IList <PointError> zBedProbePoints, bool normalise)
        {
            if (numFactors != 3 && numFactors != 4 && numFactors != 6 && numFactors != 7)
            {
                throw new Exception("Error: " + numFactors + " factors requested but only 3, 4, 6 and 7 supported");
            }
            if (numFactors > zBedProbePoints.Count)
            {
                throw new Exception("Error: need at least as many points as factors you want to calibrate");
            }

            // Transform the probing points to motor endpoints and store them in a matrix, so that we can do multiple iterations using the same data
            var probeMotorPositions = new PointError[zBedProbePoints.Count];
            var corrections         = new double[zBedProbePoints.Count];
            var initialSumOfSquares = 0.0;

            for (var i = 0; i < zBedProbePoints.Count; ++i)
            {
                corrections[i] = 0.0;
                var machinePos = new double[3]
                {
                    zBedProbePoints[i].X,
                    zBedProbePoints[i].Y,
                    0
                };

                probeMotorPositions[i] = new PointError(Transform(machinePos, 0), Transform(machinePos, 1), Transform(machinePos, 2));

                initialSumOfSquares += FSquare(zBedProbePoints[i].X) + FSquare(zBedProbePoints[i].Y) + FSquare(zBedProbePoints[i].ZError);
            }

            // remove any erroneous data points..  maybe not the best idea??
            var zip = zBedProbePoints
                      .Zip(probeMotorPositions, (point, pos) => new { point, pos })
                      .Where(_ => !_.pos.X.Equals(double.NaN) && !_.pos.Y.Equals(double.NaN) && !_.pos.ZError.Equals(double.NaN))
                      .ToList();

            zBedProbePoints     = (from z in zip select z.point).ToList();
            probeMotorPositions = (from z in zip select z.pos).ToArray();

            // Do 1 or more Newton-Raphson iterations
            var    iteration = 0;
            double expectedRmsError;

            for (;;)
            {
                // Build a Nx7 matrix of derivatives with respect to xa, xb, yc, za, zb, zc, diagonal.
                var derivativeMatrix = new double[zBedProbePoints.Count, numFactors];
                for (var i = 0; i < zBedProbePoints.Count; ++i)
                {
                    for (var j = 0; j < numFactors; ++j)
                    {
                        derivativeMatrix[i, j] =
                            ComputeDerivative(j, probeMotorPositions[i].X, probeMotorPositions[i].Y, probeMotorPositions[i].ZError);
                    }
                }

                // Now build the normal equations for least squares fitting
                var    normalMatrix = new double[numFactors, numFactors + 1];
                double temp;
                for (var i = 0; i < numFactors; ++i)
                {
                    for (var j = 0; j < numFactors; ++j)
                    {
                        temp = derivativeMatrix[0, i] * derivativeMatrix[0, j];
                        for (var k = 1; k < zBedProbePoints.Count; ++k)
                        {
                            temp += derivativeMatrix[k, i] * derivativeMatrix[k, j];
                        }
                        normalMatrix[i, j] = temp;
                    }
                    temp = derivativeMatrix[0, i] * -(zBedProbePoints[0].ZError + corrections[0]);
                    for (var k = 1; k < zBedProbePoints.Count; ++k)
                    {
                        temp += derivativeMatrix[k, i] * -(zBedProbePoints[k].ZError + corrections[k]);
                    }
                    normalMatrix[i, numFactors] = temp;
                }

                double[] solution = GaussJordan(ref normalMatrix, numFactors);
                if (solution.Any(_ => _.Equals(double.NaN)))
                {
                    throw new Exception("Unable to calculate corrections. Please make sure the bed probe points are all distinct.");
                }

                //if (debug)
                //{
                //    DebugPrint(PrintVector("Solution", solution));

                //    // Calculate and display the residuals
                //    var residuals = [];
                //    for (var i = 0; i < numPoints; ++i)
                //    {
                //        var r = zBedProbePoints[i];
                //        for (var j = 0; j < numFactors; ++j)
                //        {
                //            r += solution[j] * derivativeMatrix.data[i][j];
                //        }
                //        residuals.push(r);
                //    }
                //    DebugPrint(PrintVector("Residuals", residuals));
                //}

                Adjust(numFactors, solution, normalise);

                // Calculate the expected probe heights using the new parameters
                {
                    var expectedResiduals = new double[zBedProbePoints.Count];
                    var sumOfSquares      = 0.0;
                    for (var i = 0; i < zBedProbePoints.Count; ++i)
                    {
                        probeMotorPositions[i] = new PointError(probeMotorPositions[i].X + solution[0], probeMotorPositions[i].Y + solution[1], probeMotorPositions[i].ZError + solution[2]);
                        var newZ = InverseTransform(probeMotorPositions[i].X, probeMotorPositions[i].Y, probeMotorPositions[i].ZError);
                        corrections[i]       = newZ;
                        expectedResiduals[i] = zBedProbePoints[i].ZError + newZ;
                        sumOfSquares        += FSquare(expectedResiduals[i]);
                    }

                    expectedRmsError = Math.Sqrt(sumOfSquares / zBedProbePoints.Count);
                }

                // Decide whether to do another iteration Two is slightly better than one, but three doesn't improve things.
                // Alternatively, we could stop when the expected RMS error is only slightly worse than the RMS of the residuals.
                ++iteration;
                if (iteration == 2)
                {
                    break;
                }
            }

            return(Tuple.Create(Math.Sqrt(initialSumOfSquares / zBedProbePoints.Count), expectedRmsError));
        }
Esempio n. 2
0
        public Tuple<double, double> DoDeltaCalibration(int numFactors, IList<PointError> zBedProbePoints, bool normalise)
        {
            if (numFactors != 3 && numFactors != 4 && numFactors != 6 && numFactors != 7)
            {
                throw new Exception("Error: " + numFactors + " factors requested but only 3, 4, 6 and 7 supported");
            }
            if (numFactors > zBedProbePoints.Count)
            {
                throw new Exception("Error: need at least as many points as factors you want to calibrate");
            }

            // Transform the probing points to motor endpoints and store them in a matrix, so that we can do multiple iterations using the same data
            var probeMotorPositions = new PointError[zBedProbePoints.Count];
            var corrections = new double[zBedProbePoints.Count];
            var initialSumOfSquares = 0.0;
            for (var i = 0; i < zBedProbePoints.Count; ++i)
            {
                corrections[i] = 0.0;
                var machinePos = new double[3]
                {
                    zBedProbePoints[i].X,
                    zBedProbePoints[i].Y,
                    0
                };

                probeMotorPositions[i] = new PointError(Transform(machinePos, 0), Transform(machinePos, 1), Transform(machinePos, 2));

                initialSumOfSquares += FSquare(zBedProbePoints[i].X) + FSquare(zBedProbePoints[i].Y) + FSquare(zBedProbePoints[i].ZError);
            }

            // remove any erroneous data points..  maybe not the best idea??
            var zip = zBedProbePoints
                .Zip(probeMotorPositions, (point, pos) => new { point, pos })
                .Where(_ => !_.pos.X.Equals(double.NaN) && !_.pos.Y.Equals(double.NaN) && !_.pos.ZError.Equals(double.NaN))
                .ToList();
            zBedProbePoints = (from z in zip select z.point).ToList();
            probeMotorPositions = (from z in zip select z.pos).ToArray();

            // Do 1 or more Newton-Raphson iterations
            var iteration = 0;
            double expectedRmsError;
            for (;;)
            {
                // Build a Nx7 matrix of derivatives with respect to xa, xb, yc, za, zb, zc, diagonal.
                var derivativeMatrix = new double[zBedProbePoints.Count, numFactors];
                for (var i = 0; i < zBedProbePoints.Count; ++i)
                {
                    for (var j = 0; j < numFactors; ++j)
                    {
                        derivativeMatrix[i, j] =
                            ComputeDerivative(j, probeMotorPositions[i].X, probeMotorPositions[i].Y, probeMotorPositions[i].ZError);
                    }
                }

                // Now build the normal equations for least squares fitting
                var normalMatrix = new double[numFactors, numFactors + 1];
                double temp;
                for (var i = 0; i < numFactors; ++i)
                {
                    for (var j = 0; j < numFactors; ++j)
                    {
                        temp = derivativeMatrix[0,i] * derivativeMatrix[0,j];
                        for (var k = 1; k < zBedProbePoints.Count; ++k)
                        {
                            temp += derivativeMatrix[k,i] * derivativeMatrix[k,j];
                        }
                        normalMatrix[i,j] = temp;
                    }
                    temp = derivativeMatrix[0,i] * -(zBedProbePoints[0].ZError + corrections[0]);
                    for (var k = 1; k < zBedProbePoints.Count; ++k)
                    {
                        temp += derivativeMatrix[k,i] * -(zBedProbePoints[k].ZError + corrections[k]);
                    }
                    normalMatrix[i, numFactors] = temp;
                }

                double[] solution = GaussJordan(ref normalMatrix, numFactors);
                if (solution.Any(_ => _.Equals(double.NaN)))
                    throw new Exception("Unable to calculate corrections. Please make sure the bed probe points are all distinct.");

                //if (debug)
                //{
                //    DebugPrint(PrintVector("Solution", solution));

                //    // Calculate and display the residuals
                //    var residuals = [];
                //    for (var i = 0; i < numPoints; ++i)
                //    {
                //        var r = zBedProbePoints[i];
                //        for (var j = 0; j < numFactors; ++j)
                //        {
                //            r += solution[j] * derivativeMatrix.data[i][j];
                //        }
                //        residuals.push(r);
                //    }
                //    DebugPrint(PrintVector("Residuals", residuals));
                //}

                Adjust(numFactors, solution, normalise);

                // Calculate the expected probe heights using the new parameters
                {
                    var expectedResiduals = new double[zBedProbePoints.Count];
                    var sumOfSquares = 0.0;
                    for (var i = 0; i < zBedProbePoints.Count; ++i)
                    {
                        probeMotorPositions[i] = new PointError(probeMotorPositions[i].X + solution[0], probeMotorPositions[i].Y + solution[1], probeMotorPositions[i].ZError + solution[2]);
                        var newZ = InverseTransform(probeMotorPositions[i].X, probeMotorPositions[i].Y, probeMotorPositions[i].ZError);
                        corrections[i] = newZ;
                        expectedResiduals[i] = zBedProbePoints[i].ZError + newZ;
                        sumOfSquares += FSquare(expectedResiduals[i]);
                    }

                    expectedRmsError = Math.Sqrt(sumOfSquares / zBedProbePoints.Count);
                }

                // Decide whether to do another iteration Two is slightly better than one, but three doesn't improve things.
                // Alternatively, we could stop when the expected RMS error is only slightly worse than the RMS of the residuals.
                ++iteration;
                if (iteration == 2) { break; }
            }

            return Tuple.Create(Math.Sqrt(initialSumOfSquares / zBedProbePoints.Count), expectedRmsError);
        }