public void printNode(TreeNode root, string tabs) { System.Console.WriteLine(tabs + '|' + root.attribute + '|'); if (root.attribute.values != null) { for (int i = 0; i < root.attribute.values.Length; i++) { System.Console.WriteLine(tabs + "\t" + "<" + root.attribute.values[i] + ">"); TreeNode childNode = root.getChildByBranchName(root.attribute.values[i]); printNode(childNode, "\t" + tabs); } } }
/// <summary> /// Monta uma árvore de decisão baseado nas amostragens apresentadas /// </summary> /// <param name="samples">Tabela com as amostragens que serão apresentadas para a montagem da árvore</param> /// <param name="targetAttribute">Nome da coluna da tabela que possue o valor true ou false para /// validar ou não uma amostragem</param> /// <returns>A raiz da árvore de decisão montada</returns> private TreeNode internalMountTree(DataTable samples, string targetAttribute, Attribute[] attributes) { if (allSamplesPositives(samples, targetAttribute) == true) return new TreeNode(new Attribute(true)); if (allSamplesNegatives(samples, targetAttribute) == true) return new TreeNode(new Attribute(false)); if (attributes.Length == 0) return new TreeNode(new Attribute(getMostCommonValue(samples, targetAttribute))); mTotal = samples.Rows.Count; mTargetAttribute = targetAttribute; mTotalPositives = countTotalPositives(samples); mEntropySet = calcEntropy(mTotalPositives, mTotal - mTotalPositives); Attribute bestAttribute = getBestAttribute(samples, attributes); TreeNode root = new TreeNode(bestAttribute); DataTable aSample = samples.Clone(); foreach (string value in bestAttribute.values) { // Seleciona todas os elementos com o valor deste atributo aSample.Rows.Clear(); DataRow[] rows = samples.Select(bestAttribute.AttributeName + " = " + "'" + value + "'"); foreach (DataRow row in rows) { aSample.Rows.Add(row.ItemArray); } // Seleciona todas os elementos com o valor deste atributo // Cria uma nova lista de atributos menos o atributo corrente que é o melhor atributo ArrayList aAttributes = new ArrayList(attributes.Length - 1); for (int i = 0; i < attributes.Length; i++) { if (attributes[i].AttributeName != bestAttribute.AttributeName) aAttributes.Add(attributes[i]); } // Cria uma nova lista de atributos menos o atributo corrente que é o melhor atributo if (aSample.Rows.Count == 0) { return new TreeNode(new Attribute(getMostCommonValue(aSample, targetAttribute))); } else { DecisionTreeID3 dc3 = new DecisionTreeID3(); TreeNode ChildNode = dc3.mountTree(aSample, targetAttribute, (Attribute[])aAttributes.ToArray(typeof(Attribute))); root.AddTreeNode(ChildNode, value); } } return root; }
/// <summary> /// Adiciona um TreeNode filho a este treenode no galho de nome indicicado pelo ValueName /// </summary> /// <param name="treeNode">TreeNode filho a ser adicionado</param> /// <param name="ValueName">Nome do galho onde o treeNode é criado</param> public void AddTreeNode(TreeNode treeNode, string ValueName) { int index = mAttribute.indexValue(ValueName); mChilds[index] = treeNode; }