Inheritance: IExtensibleProcessIR, IZeroRateReference, IMarkovSimulator, IParsable, IPostSimulationTransformation, IPopulable, IVectorialMarkovSimulator, IGreeksDerivativesInfo, IOpenCLCode, IExportableContainer
Esempio n. 1
0
        /// <summary>
        /// Format the y parameter so it can be made compatible with <see cref="Pelsser.Bond"/>.
        /// </summary>
        /// <param name="y">The y parameter wanted inside Bond.</param>
        /// <param name="process">The Pelsser process which will be used.</param>
        /// <returns>The Matrix to pass to Bond.</returns>
        private Matrix DynamicParam(double y, SquaredGaussianModel process)
        {
            double alphaT = process.F(process.CacheDates[0], process.CacheDates[1] - process.CacheDates[0]) +
                            2 * Math.Exp(-process.a1.V() * process.CacheDates[0]) * process.Int(0, process.CacheDates[0]);

            return(new Matrix(new double[] { Math.Pow(y + alphaT, 2) }));
        }
Esempio n. 2
0
        public static void Calculate(double t1, double t2, double simEnd, int numSim, int numSteps, out double val, out double stDev)
        {
            Engine.MultiThread = true;

            Document doc = new Document();
            ProjectROV rov = new ProjectROV(doc);
            doc.Part.Add(rov);

            AFunction zerorate = new AFunction(rov);
            zerorate.VarName = "zr";
            zerorate.m_IndependentVariables = 1;
            zerorate.m_Value = (RightValue)0.05;

            rov.Symbols.Add(zerorate);

            // To be changed to 350000.
            int n_sim = numSim;
            int n_steps = numSteps;
            SquaredGaussianModel process = new SquaredGaussianModel();
            process.a1 = (ModelParameter)0.1;
            process.sigma1 = (ModelParameter)0.01;
            process.zr = (ModelParameter)"@zr";

            StochasticProcessExtendible s = new StochasticProcessExtendible(rov, process);
            rov.Processes.AddProcess(s);

            // Set the discounting.
            RiskFreeInfo rfi = rov.GetDiscountingModel() as RiskFreeInfo;
            rfi.ActualizationType = EActualizationType.RiskFree;
            rfi.m_deterministicRF = 0.0;

            OptionTree op = new OptionTree(rov);
            op.PayoffInfo.PayoffExpression = "bond(" + t1.ToString() + ";" + t2.ToString() + ";@v1)";

            // Here we put the simulation maturity.
            op.PayoffInfo.Timing.EndingTime.m_Value = (RightValue)simEnd;
            op.PayoffInfo.European = true;
            rov.Map.Root = op;

            rov.NMethods.Technology = ETechType.T_SIMULATION;
            rov.NMethods.PathsNumber = n_sim;
            rov.NMethods.SimulationSteps = n_steps;

            ROVSolver solver = new ROVSolver();
            solver.BindToProject(rov);
            solver.DoValuation(-1);

            if (rov.HasErrors)
            {
                Console.WriteLine(rov.m_RuntimeErrorList[0]);
            }

            ResultItem price = rov.m_ResultList[0] as ResultItem;
            val = price.value;
            stDev = price.stdDev / Math.Sqrt((double)numSim);
        }
        public void Test()
        {
            Document   doc = new Document();
            ProjectROV rov = new ProjectROV(doc);

            doc.Part.Add(rov);

            AFunction zerorate = new AFunction(rov);

            zerorate.VarName = "zr";
            zerorate.m_IndependentVariables = 1;
            zerorate.m_Value = (RightValue)"0.05";

            rov.Symbols.Add(zerorate);

            int n_sim   = 5000;
            int n_steps = 900;
            SquaredGaussianModel process = new SquaredGaussianModel();

            process.a1     = (ModelParameter)0.0704877770928728;
            process.sigma1 = (ModelParameter)0.116251516678772;
            process.zr     = (ModelParameter)"@zr";

            StochasticProcessExtendible s = new StochasticProcessExtendible(rov, process);

            rov.Processes.AddProcess(s);

            OptionTree op = new OptionTree(rov);

            op.PayoffInfo.PayoffExpression = "bond(t;10;@v1)";

            // Set the simulation maturity.
            op.PayoffInfo.Timing.EndingTime.m_Value = (RightValue)2.0;
            op.PayoffInfo.European = true;
            rov.Map.Root           = op;

            rov.NMethods.Technology      = ETechType.T_SIMULATION;
            rov.NMethods.PathsNumber     = n_sim;
            rov.NMethods.SimulationSteps = n_steps;

            ROVSolver solver = new ROVSolver();

            solver.BindToProject(rov);
            solver.DoValuation(-1);
        }
        public void Test()
        {
            Document doc = new Document();
            ProjectROV rov = new ProjectROV(doc);
            doc.Part.Add(rov);

            AFunction zerorate = new AFunction(rov);
            zerorate.VarName = "zr";
            zerorate.m_IndependentVariables = 1;
            zerorate.m_Value = (RightValue)"0.05";

            rov.Symbols.Add(zerorate);

            int n_sim = 5000;
            int n_steps = 900;
            SquaredGaussianModel process = new SquaredGaussianModel();
            process.a1 = (ModelParameter)0.0704877770928728;
            process.sigma1 = (ModelParameter)0.116251516678772;
            process.zr = (ModelParameter)"@zr";

            StochasticProcessExtendible s = new StochasticProcessExtendible(rov, process);
            rov.Processes.AddProcess(s);

            OptionTree op = new OptionTree(rov);
            op.PayoffInfo.PayoffExpression = "bond(t;10;@v1)";

            // Set the simulation maturity.
            op.PayoffInfo.Timing.EndingTime.m_Value = (RightValue)2.0;
            op.PayoffInfo.European = true;
            rov.Map.Root = op;

            rov.NMethods.Technology = ETechType.T_SIMULATION;
            rov.NMethods.PathsNumber = n_sim;
            rov.NMethods.SimulationSteps = n_steps;

            ROVSolver solver = new ROVSolver();
            solver.BindToProject(rov);
            solver.DoValuation(-1);
        }
        /// <summary>
        /// Constructor to create a new instance of the PelsserCache.
        /// </summary>
        /// <param name="t">The first date parameter this element is referenced to.</param>
        /// <param name="s">The second date parameter this element is referenced to.</param>
        /// <param name="p_instance">
        /// The instance to the <see cref="SquaredGaussianModel"/> this cache references to.
        /// </param>
        public PelsserCache(double t, double s, SquaredGaussianModel p_instance)
        {
            this.instance = p_instance;

            double[] btT;

            // Integral calculation is always done with daily intervals.
            int ipy = 252;

            double cached_dt = this.instance.CacheDates[1] - this.instance.CacheDates[0];

            // Indices representing t and s on the mDates discretization.
            if (this.instance.CacheDates[this.instance.CacheDates.Length - 1] < s || 1.0 / cached_dt < ipy)
            {
                double   dt       = 1.0 / ipy;
                double[] newDates = new double[(int)(1 + s * ipy)];
                for (int j = 0; j < newDates.Length; j++)
                {
                    newDates[j] = j * dt;
                }

                this.instance.CalculateValueForCache(newDates);
            }

            int    ti    = DVPLDOM.AdaptiveTimeDiscretization.DiscreteTime(t, this.instance.CacheDates);
            int    si    = DVPLDOM.AdaptiveTimeDiscretization.DiscreteTime(s, this.instance.CacheDates);
            double delta = this.instance.CacheDates[1] - this.instance.CacheDates[0];


            btT    = this.instance.B(ti, si, delta);
            this.A = this.instance.A(ti, si, delta, btT);
            if (btT.Length > 0)
            {
                this.B = btT[0];
            }

            this.CtT0 = this.instance.C(s - t);
        }
Esempio n. 6
0
        /// <summary>
        /// Caplet prices calculated as a put on a zero coupon bond.
        /// </summary>
        /// <param name="model">The model to use to execute the calculation.</param>
        /// <param name="mat">
        /// Caplet maturity. This vector starts from zero and increases
        /// of step DeltaK each element till the last one.
        /// </param>
        /// <param name="fwd">Forward with the deltaK step.</param>
        /// <param name="rk">Strike vector (columns).</param>
        /// <param name="deltaK">Amount to use as increase factor.</param>
        /// <param name="tOss">The Maturities.</param>
        /// <returns>A <see cref="Matrix"/> with the caplet prices.</returns>
        public Matrix PGSMCaplets(SquaredGaussianModel model, Vector mat, Vector fwd, Vector rk, double deltaK, Vector tOss)
        {
            double s = model.sigma1.fV();
            int col = rk.Length;

            int NP = (int)(1 + tOss[tOss.Length - 1] * 252);
            double[] dates = new double[NP];
            double step = mat[mat.Length - 1] / (NP - 1);
            for (int z = 0; z < NP; z++)
                dates[z] = step * z;

            DateTime t0 = DateTime.Now;
            model.Setup(dates);
            DateTime t1 = DateTime.Now;

            Vector K = 1.0 / (1 + rk * deltaK);
            double cCost = model.C(deltaK);
            Vector sigma0s = Math.Pow(s, 2) * CtT(model, 0, mat);

            Matrix caplets = new Matrix(mat.Length - 1, rk.Length);
            Matrix caps = new Matrix(tOss.Length, rk.Length);

            // Pre-calculate values.
            Vector logK = Vector.Log(K);

            // Parallel version.
            List<Task> tl = new List<Task>();

            Context context = new Context();
            context.Model = model;
            context.Mat = mat;
            context.Fwd = fwd;
            context.RK = rk;
            context.DeltaK = deltaK;
            context.TOss = tOss;
            context.K = K;
            context.LogK = logK;
            context.Caplets = caplets;
            context.Sigma0s = sigma0s;
            context.CCost = cCost;
            context.RowStart = 0;
            context.RowEnd = (mat.Length - 2) / 2;
            tl.Add(Task.Factory.StartNew(Context.CalculateRowP, context));

            context = new Context();
            context.Model = model;
            context.Mat = mat;
            context.Fwd = fwd;
            context.RK = rk;
            context.DeltaK = deltaK;
            context.TOss = tOss;
            context.K = K;
            context.LogK = logK;
            context.Caplets = caplets;
            context.Sigma0s = sigma0s;
            context.CCost = cCost;
            context.RowStart = (mat.Length - 2) / 2 + 1;
            context.RowEnd = mat.Length - 2 - 1;
            tl.Add(Task.Factory.StartNew(Context.CalculateRowP, context));

            tsScheduler.WaitTaskList(tl);

            // Sequential version.
            /*
            Context Context = new Context();
            Context.Model = Model;
            Context.Mat = Mat;
            Context.Fwd = Fwd;
            Context.RK = RK;
            Context.DeltaK = DeltaK;
            Context.TOss = TOss;
            Context.K = K;
            Context.LogK = LogK;
            Context.Caplets = Caplets;
            Context.Sigma0s = Sigma0s;
            Context.CCost = CCost;

               for (int r = 0; r < Mat.Length - 2; r++)
              Context.CalculateRow(r);
               */

            // Calculate the caps from the caplets.
            for (int r = 0; r < tOss.Length; r++)
            {
                for (int c = 0; c < rk.Length; c++)
                {
                        double current = 0;
                        for (int ci = 0; ci < (int)(tOss[r] / deltaK) - 1; ci++)
                            current += caplets[ci, c];
                        caps[r, c] = current;
                }
            }

            return caps;
        }
Esempio n. 7
0
 /// <summary>
 /// Calculates the integral C(t, T) function with T taking
 /// every element of the parameter mat.
 /// </summary>
 /// <param name="model">The model instance.</param>
 /// <param name="t">The starting point of the integral.</param>
 /// <param name="mat">The vector of ending interval points T.</param>
 /// <returns>The vector of pre-calculated C(t,T).</returns>
 private Vector CtT(SquaredGaussianModel model, double t, Vector mat)
 {
     Vector C = new Vector(mat.Length);
     for (int i = 0; i < mat.Length; i++)
         C[i] = model.C(mat[i] - t);
     return C;
 }
        /// <summary>
        /// Constructor to create a new instance of the PelsserCache.
        /// </summary>
        /// <param name="t">The first date parameter this element is referenced to.</param>
        /// <param name="s">The second date parameter this element is referenced to.</param>
        /// <param name="p_instance">
        /// The instance to the <see cref="SquaredGaussianModel"/> this cache references to.
        /// </param>
        public PelsserCache(double t, double s, SquaredGaussianModel p_instance)
        {
            this.instance = p_instance;

            double[] btT;

            // Integral calculation is always done with daily intervals.
            int ipy = 252;

            double cached_dt = this.instance.CacheDates[1] - this.instance.CacheDates[0];

            // Indices representing t and s on the mDates discretization.
            if (this.instance.CacheDates[this.instance.CacheDates.Length - 1] < s || 1.0 / cached_dt < ipy)
            {
                double dt = 1.0 / ipy;
                double[] newDates = new double[(int)(1 + s * ipy)];
                for (int j = 0; j < newDates.Length; j++)
                    newDates[j] = j * dt;

                this.instance.CalculateValueForCache(newDates);
            }

            int ti = DVPLDOM.AdaptiveTimeDiscretization.DiscreteTime(t, this.instance.CacheDates);
            int si = DVPLDOM.AdaptiveTimeDiscretization.DiscreteTime(s, this.instance.CacheDates);
            double delta = this.instance.CacheDates[1] - this.instance.CacheDates[0];

            btT = this.instance.B(ti, si, delta);
            this.A = this.instance.A(ti, si, delta, btT);
            if (btT.Length > 0)
            {
                this.B = btT[0];
            }

            this.CtT0 = this.instance.C(s - t);
        }
        /// <summary>
        /// Attempts a calibration through <see cref="PelsserCappletOptimizationProblem"/>
        /// using caps matrices.
        /// </summary>
        /// <param name="data">The data to be used in order to perform the calibration.</param>
        /// <param name="settings">The parameter is not used.</param>
        /// <param name="controller">The controller which may be used to cancel the process.</param>
        /// <returns>The results of the calibration.</returns>
        public EstimationResult Estimate(List<object> data, IEstimationSettings settings = null, IController controller = null, Dictionary<string, object> properties = null)
        {
            InterestRateMarketData dataset = data[0] as InterestRateMarketData;
            EstimationResult result;
            if ((dataset.ZRMarket == null) || (dataset.CapVolatility == null))
            {
                result = new EstimationResult();
                result.ErrorMessage = "Not enough data to calibrate.\n" +
                    "The estimator needs a ZRMarket and a CapVolatility " +
                    "defined inside InterestRateMarketData";
                return result;
            }

            // Backup the dates
            DateTime effectiveDate = DateTime.Now.Date;
            DateTime valuationDate = DateTime.Now.Date;
            if (Document.ActiveDocument != null)
            {
                effectiveDate = Document.ActiveDocument.ContractDate;
                valuationDate = Document.ActiveDocument.SimulationStartDate;
            }

            // Creates the Context.
            Document doc = new Document();
            ProjectROV prj = new ProjectROV(doc);
            doc.Part.Add(prj);

            Function zr = new PFunction(null);
            zr.VarName = "zr";
            // Load the zr.
            double[,] zrvalue = (double[,])ArrayHelper.Concat(dataset.ZRMarketDates.ToArray(), dataset.ZRMarket.ToArray());
            zr.Expr = zrvalue;

            prj.Symbols.Add(zr);

            BlackModel bm = new BlackModel(zr);

            double deltak = dataset.CapTenor;

            Matrix capVol = dataset.CapVolatility;
            Vector capMat = dataset.CapMaturity;
            Vector capK = dataset.CapRate;

            var preferences = settings as Fairmat.Calibration.CapVolatilityFiltering;

            // Matrix calculated with black.
            Matrix blackCaps = new Matrix(capMat.Length, capK.Length);
            for (int m = 0; m < capMat.Length; m++)
            {
                for (int s = 0; s < capK.Length; s++)
                {
                    bool skip = false;
                    if (preferences != null)
                    {
                        if (capK[s] < preferences.MinCapRate || capK[s] > preferences.MaxCapRate ||
                           capMat[m] < preferences.MinCapMaturity || capMat[m] > preferences.MaxCapMaturity)
                                {skip = true; }
                    }

                    if (capVol[m, s] == 0 || skip)
                        blackCaps[m, s] = 0;
                    else
                        blackCaps[m, s] = bm.Cap(capK[s], capVol[m, s], deltak, capMat[m]);
                }
            }

            if (blackCaps.IsNAN())
            {
                Console.WriteLine("Black caps matrix has non real values:");
                Console.WriteLine(blackCaps);
                throw new Exception("Cannot calculate Black caps");
            }

            // Maturity goes from 0 to the last item with step deltaK.
            Vector maturity = new Vector((int)(1.0 + capMat[capMat.Length - 1] / deltak));
            for (int l = 0; l < maturity.Length; l++)
                maturity[l] = deltak * l;

            Vector fwd = new Vector(maturity.Length - 1);
            for (int i = 0; i < fwd.Length; i++)
            {
                fwd[i] = bm.Fk(maturity[i + 1], deltak);
            }

            // Creates a default Pelsser model.
            Pelsser.SquaredGaussianModel model = new Pelsser.SquaredGaussianModel();
            model.a1 = (ModelParameter)0.014;
            model.sigma1 = (ModelParameter)0.001;
            model.zr = (ModelParameter)"@zr";
            StochasticProcessExtendible iex = new StochasticProcessExtendible(prj, model);
            prj.Processes.AddProcess(iex);

            prj.Parse();

            DateTime t0 = DateTime.Now;
            Caplet cp = new Caplet();

            PelsserCappletOptimizationProblem problem = new PelsserCappletOptimizationProblem(prj, cp, maturity, fwd, capK, deltak, capMat, blackCaps);

            IOptimizationAlgorithm solver = new QADE();
            IOptimizationAlgorithm solver2 = new SteepestDescent();

            DESettings o = new DESettings();
            o.NP = 35;
            o.TargetCost = 0.0025;
            o.MaxIter = 10;
            o.Verbosity = Math.Max(1, Engine.Verbose);
            o.controller = controller;
            // Parallel evaluation is not supported for this calibration.
            o.Parallel = false;
            o.Debug = true;
            SolutionInfo solution = null;

            Vector x0 = (Vector)new double[] { 0.1, 0.1 };

            solution = solver.Minimize(problem, o, x0);
            if (solution.errors)
                return new EstimationResult(solution.message);

            o.epsilon = 10e-7;
            o.h = 10e-7;
            o.MaxIter = 1000;
            o.Debug = true;
            o.Verbosity = Math.Max(1, Engine.Verbose);

            if (solution != null)
                solution = solver2.Minimize(problem, o, solution.x);
            else
                solution = solver2.Minimize(problem, o, x0);

            if (solution.errors)
                return new EstimationResult(solution.message);

            Console.WriteLine(solution);

            string[] names = new string[] { "alpha1", "sigma1" };
            result = new EstimationResult(names, solution.x);

            result.ZRX = (double[])dataset.ZRMarketDates.ToArray();
            result.ZRY = (double[])dataset.ZRMarket.ToArray();
            result.Objects = new object[1];
            result.Objects[0] = solution.obj;
            //result.Fit = solution.obj;//Uncomment in 1.6
            // Restore the dates
            if (Document.ActiveDocument != null)
            {
                Document.ActiveDocument.ContractDate = effectiveDate;
                Document.ActiveDocument.SimulationStartDate = valuationDate;
            }

            return result;
        }
Esempio n. 10
0
 /// <summary>
 /// Format the y parameter so it can be made compatible with <see cref="Pelsser.Bond"/>.
 /// </summary>
 /// <param name="y">The y parameter wanted inside Bond.</param>
 /// <param name="process">The Pelsser process which will be used.</param>
 /// <returns>The Matrix to pass to Bond.</returns>
 private Matrix DynamicParam(double y, SquaredGaussianModel process)
 {
     double alphaT = process.F(process.CacheDates[0], process.CacheDates[1] - process.CacheDates[0]) +
                         2 * Math.Exp(-process.a1.V() * process.CacheDates[0]) * process.Int(0, process.CacheDates[0]);
     return new Matrix(new double[] { Math.Pow(y + alphaT, 2) });
 }
Esempio n. 11
0
        public void Test()
        {
            Engine.MultiThread = true;

            Document doc = new Document();
            ProjectROV rov = new ProjectROV(doc);
            doc.Part.Add(rov);

            AFunction zerorate = new AFunction(rov);
            zerorate.VarName = "zr";
            zerorate.m_IndependentVariables = 1;
            zerorate.m_Value = (RightValue)0.05;

            rov.Symbols.Add(zerorate);

            int n_sim = 5000;
            int n_steps = 900;
            SquaredGaussianModel process = new SquaredGaussianModel();
            process.a1 = (ModelParameter)0.1;
            process.sigma1 = (ModelParameter)0.01;
            process.zr = (ModelParameter)"@zr";

            StochasticProcessExtendible s = new StochasticProcessExtendible(rov, process);
            rov.Processes.AddProcess(s);

            // Set the discounting.
            RiskFreeInfo rfi = rov.GetDiscountingModel() as RiskFreeInfo;
            rfi.ActualizationType = EActualizationType.RiskFree;
            rfi.m_deterministicRF = 0.0;

            OptionTree op = new OptionTree(rov);
            op.PayoffInfo.PayoffExpression = "bond(t;10;@v1)";

            // Set the simulation maturity.
            op.PayoffInfo.Timing.EndingTime.m_Value = (RightValue)2.0;
            op.PayoffInfo.European = true;
            rov.Map.Root = op;

            rov.NMethods.Technology = ETechType.T_SIMULATION;
            rov.NMethods.PathsNumber = n_sim;
            rov.NMethods.SimulationSteps = n_steps;

            ROVSolver solver = new ROVSolver();
            solver.BindToProject(rov);
            solver.DoValuation(-1);

            if (rov.HasErrors)
            {
                Console.WriteLine(rov.m_RuntimeErrorList[0]);
            }

            Assert.IsFalse(rov.HasErrors);

            ResultItem price = rov.m_ResultList[0] as ResultItem;
            Console.WriteLine("Bond Test Value = " + price.value.ToString());

            Assert.LessOrEqual(Math.Abs(0.6702 - price.value), .01);

            // Try to do some simple tests and check the results.
            double b0_10 = process.Bond(DynamicParam(0, process), process.CacheDates, 0, 0, 10);
            Console.WriteLine("Bond(0,10) = " + b0_10);

            Assert.LessOrEqual(Math.Abs(b0_10 - 0.606513), .001);

            double b7_10 = process.Bond(DynamicParam(0.00427631, process), process.CacheDates, 0, 7, 10);
            Console.WriteLine("Bond(7,10) = " + b7_10);

            Assert.LessOrEqual(Math.Abs(b7_10 - 0.856374), .001);

            double b7_30 = process.Bond(DynamicParam(0.00427631, process), process.CacheDates, 0, 7, 30);
        }
Esempio n. 12
0
        public void Test()
        {
            Engine.MultiThread = true;

            Document   doc = new Document();
            ProjectROV rov = new ProjectROV(doc);

            doc.Part.Add(rov);

            AFunction zerorate = new AFunction(rov);

            zerorate.VarName = "zr";
            zerorate.m_IndependentVariables = 1;
            zerorate.m_Value = (RightValue)0.05;

            rov.Symbols.Add(zerorate);

            int n_sim   = 5000;
            int n_steps = 900;
            SquaredGaussianModel process = new SquaredGaussianModel();

            process.a1     = (ModelParameter)0.1;
            process.sigma1 = (ModelParameter)0.01;
            process.zr     = (ModelParameter)"@zr";

            StochasticProcessExtendible s = new StochasticProcessExtendible(rov, process);

            rov.Processes.AddProcess(s);

            // Set the discounting.
            RiskFreeInfo rfi = rov.GetDiscountingModel() as RiskFreeInfo;

            rfi.ActualizationType = EActualizationType.RiskFree;
            rfi.m_deterministicRF = 0.0;

            OptionTree op = new OptionTree(rov);

            op.PayoffInfo.PayoffExpression = "bond(t;10;@v1)";

            // Set the simulation maturity.
            op.PayoffInfo.Timing.EndingTime.m_Value = (RightValue)2.0;
            op.PayoffInfo.European = true;
            rov.Map.Root           = op;

            rov.NMethods.Technology      = ETechType.T_SIMULATION;
            rov.NMethods.PathsNumber     = n_sim;
            rov.NMethods.SimulationSteps = n_steps;

            ROVSolver solver = new ROVSolver();

            solver.BindToProject(rov);
            solver.DoValuation(-1);

            if (rov.HasErrors)
            {
                Console.WriteLine(rov.m_RuntimeErrorList[0]);
            }

            Assert.IsFalse(rov.HasErrors);

            ResultItem price = rov.m_ResultList[0] as ResultItem;

            Console.WriteLine("Bond Test Value = " + price.value.ToString());

            Assert.LessOrEqual(Math.Abs(0.6702 - price.value), .01);

            // Try to do some simple tests and check the results.
            double b0_10 = process.Bond(DynamicParam(0, process), process.CacheDates, 0, 0, 10);

            Console.WriteLine("Bond(0,10) = " + b0_10);

            Assert.LessOrEqual(Math.Abs(b0_10 - 0.606513), .001);

            double b7_10 = process.Bond(DynamicParam(0.00427631, process), process.CacheDates, 0, 7, 10);

            Console.WriteLine("Bond(7,10) = " + b7_10);

            Assert.LessOrEqual(Math.Abs(b7_10 - 0.856374), .001);

            double b7_30 = process.Bond(DynamicParam(0.00427631, process), process.CacheDates, 0, 7, 30);
        }
Esempio n. 13
0
        public static void Calculate(double t1, double t2, double simEnd, int numSim, int numSteps, out double val, out double stDev)
        {
            Engine.MultiThread = true;

            Document   doc = new Document();
            ProjectROV rov = new ProjectROV(doc);

            doc.Part.Add(rov);

            AFunction zerorate = new AFunction(rov);

            zerorate.VarName = "zr";
            zerorate.m_IndependentVariables = 1;
            zerorate.m_Value = (RightValue)0.05;

            rov.Symbols.Add(zerorate);

            // To be changed to 350000.
            int n_sim   = numSim;
            int n_steps = numSteps;
            SquaredGaussianModel process = new SquaredGaussianModel();

            process.a1     = (ModelParameter)0.1;
            process.sigma1 = (ModelParameter)0.01;
            process.zr     = (ModelParameter)"@zr";

            StochasticProcessExtendible s = new StochasticProcessExtendible(rov, process);

            rov.Processes.AddProcess(s);

            // Set the discounting.
            RiskFreeInfo rfi = rov.GetDiscountingModel() as RiskFreeInfo;

            rfi.ActualizationType = EActualizationType.RiskFree;
            rfi.m_deterministicRF = 0.0;

            OptionTree op = new OptionTree(rov);

            op.PayoffInfo.PayoffExpression = "bond(" + t1.ToString() + ";" + t2.ToString() + ";@v1)";

            // Here we put the simulation maturity.
            op.PayoffInfo.Timing.EndingTime.m_Value = (RightValue)simEnd;
            op.PayoffInfo.European = true;
            rov.Map.Root           = op;

            rov.NMethods.Technology      = ETechType.T_SIMULATION;
            rov.NMethods.PathsNumber     = n_sim;
            rov.NMethods.SimulationSteps = n_steps;

            ROVSolver solver = new ROVSolver();

            solver.BindToProject(rov);
            solver.DoValuation(-1);

            if (rov.HasErrors)
            {
                Console.WriteLine(rov.m_RuntimeErrorList[0]);
            }

            ResultItem price = rov.m_ResultList[0] as ResultItem;

            val   = price.value;
            stDev = price.stdDev / Math.Sqrt((double)numSim);
        }