Esempio n. 1
0
        //instrukcja do przycisku reset
        private void resetB_Click(object sender, EventArgs e)
        {
            i = 0;
            j = 0;

            avvelocity = new float[1];
            avfitness  = new float[1];
            avbfitness = new float[1];
            List <Particle> itemList = new List <Particle>();

            population = new Populacja(populationestore.dim);
            population = (Populacja)populationestore.Clone();
            foreach (Particle item in populationestore.population)
            {
                Particle tmp = new Particle(populationestore.dim);
                Particle.copy(item, tmp);
                population.population.Add(tmp);
            }

            model = new Thread(GenGraph2);
            model.IsBackground = true;
            model.Start();
            List <Populacja> tmp1 = new PSO(numberIterations, inertiaw, c1, c2, r1r2, linearinertia).PSOALG(population);

            this.functionButtonSet(false);

            animace = new Thread(ShowParticleMove);
            animace.IsBackground = true;
            animace.Start(tmp1);
        }
Esempio n. 2
0
        private void ShowParticleOnGraph(Populacja tmp, int size = 10)
        {
            double best = tmp.population.Min(x => x.fitnessValue);

            foreach (Particle item in tmp.population)
            {
                ILArray <float> coords = new float[3];
                coords[0] = (float)item.position[0];
                coords[1] = (float)item.position[1];
                coords[2] = (float)item.fitnessValue;// +1000;
                ILPoints bod = surface.Add(Shapes.Point);
                //surface.Colormap = Colormaps.Hot;

                if (item.fitnessValue == best)
                {
                    bod.Color = Color.Red;
                    bod.Size  = 10;
                }
                else
                {
                    bod.Color = Color.Black;
                    bod.Size  = size;
                }

                bod.Positions.Update(coords);
                surface.Add(bod);
            }
        }
Esempio n. 3
0
        public static Populacja Copy()
        {
            Populacja item = new Populacja();

            item.maxX           = maxX;
            item.minX           = minX;
            item.populationSize = populationSize;
            item.type           = type;
            item.dim            = dim;
            return(item);
        }
Esempio n. 4
0
        private void GenerateGraph()
        {
            Invoke(new Action(() => ilgraf.Visible = true));



            MaxEpoch = new Populacja(MaxEpochSize, Funkcje.FunctionName.type);
            MaxEpoch.SetRangeOfPopulation();
            MaxEpoch.GenerateGraphPopulation();
            MaxEpoch.ObliczPopulFitness();

            population = new Populacja(PopulationSize, dim, Funkcje.FunctionName.type);
            population.SetRangeOfPopulation();
            population.GeneratePopulation(dim);
            population.ObliczPopulFitness();

            float[] newData = new float[MaxEpoch.population.Count * 3];
            Parallel.For(0, MaxEpoch.population.Count, i =>
            {
                newData[i] = (float)MaxEpoch.population[i].fitnessValue;                                // Z
                newData[i + MaxEpoch.population.Count]     = (float)MaxEpoch.population[i].position[0]; // X
                newData[i + 2 * MaxEpoch.population.Count] = (float)MaxEpoch.population[i].position[1]; // Y
            });

            int size = (int)Math.Sqrt(MaxEpoch.population.Count);

            data    = ILNumerics.ILMath.array(newData, size, size, 3);
            surface = new ILSurface(data);
            surface.Fill.Markable      = false;
            surface.Wireframe.Markable = false;
            //surface.Colormap = Colormaps.Copper;
            ILColorbar color = new ILColorbar()
            {
                Location = new PointF(.96f, 0.1f)
            };

            surface.Children.Add(color);
            this.ShowParticleOnGraph(population);
            //this.ShowGraphChart(population);
            //this.ShowCharts(population);
            //this.RefreshModel();
        }
Esempio n. 5
0
        private void StartBtn_Click(object sender, EventArgs e)
        {
            //string f = FunctionSelectionCombo.SelectedItem.ToString();
            //if (!String.IsNullOrEmpty(funkcja)&&!funkcja.Equals("Proszę wybrać funkcję do optymalizacji"))
            //{
            //  ileCzastek = Convert.ToInt16(ParticleQuantityUpDown.Value);
            // maxEpochs = Convert.ToInt16(MaxEpochUpDown.Value);
            // optymalizacja = new PSO(dziedzinyFunkcji[funkcja], ileCzastek, maxEpochs, funkcja);
            //  MessageBox.Show(string.Format("Znalezione minimum to {0} z błędem {1}", PSO.PSOSolution().Item1, PSO.PSOSolution().Item2),"Rezultat optymalizacji",MessageBoxButtons.OK,MessageBoxIcon.Information);
            // }
            // else MessageBox.Show("Nie wybrano funkcji do optymalizacji","BŁĄD!",MessageBoxButtons.OK,MessageBoxIcon.Error);



            // instrukcja do przycisku start
            List <Populacja> tmp = new PSO(numberIterations, inertiaw, c1, c2, r1r2, linearinertia).PSOALG(population);

            this.functionButtonSet(false);

            animace = new Thread(ShowParticleMove);
            animace.IsBackground = true;
            animace.Start(tmp);
            if (thesame == true)
            {
                resetB.Enabled = true;
            }


            double[] tab      = new double[testnumber];
            float[]  sum      = new float[numberIterations];
            float[]  best     = new float[numberIterations];
            float[]  worst    = new float[numberIterations];
            float[]  bgfworst = new float[numberIterations];
            float[]  bgfbest  = new float[numberIterations];
            float[]  bgfav    = new float[numberIterations];

            float[] globalmin     = new float[testnumber];
            double  wynik         = 0;
            double  bestresult    = 0;
            double  worstresult   = 0;
            double  percentsucess = 0;
            double  tmpbest       = 0;
            double  tmpworst      = 0;


            for (int i = 0; i < testnumber; ++i)
            {
                population = new Populacja(PopulationSize, dim, Funkcje.FunctionName.type);
                population.SetRangeOfPopulation(Funkcje.FunctionName.type, error);
                population.GeneratePopulation(dim);
                population.ObliczPopulFitness(Funkcje.FunctionName.type);

                //List<Populacja> tmp = new PSO(numberIterations, inertiaw, c1, c2, r1r2, linearinertia).PSOALG(population);//numberIterations, inertiaw
                tmp.Remove(tmp.Last());
                tab[i]       = tmp.Min((x => x.NajlepszaFitness)); //tablica wartości wyników-z tego obliczyc % sukcesów
                wynik       += tab[i];
                globalmin[i] = (float)tmp.Min((x => x.NajlepszaFitness));


                if (Math.Abs(tab[i] - tmp.First().min) < tmp.First().exitError)
                {
                    percentsucess++;
                }

                if (i == 0)
                {
                    tmpbest  = tab[i];
                    tmpworst = tab[i];
                }
                int popnumber = 0;

                foreach (Populacja pop in tmp)
                {
                    float b = 0;
                    float c = 0;

                    bgfav[popnumber] += (float)pop.NajlepszaFitness / testnumber;

                    var scene = new ILScene();
                    scene.Screen.First <ILLabel>().Visible = false;

                    foreach (Particle item in pop.population)
                    {
                        // MessageBox.Show(a.Length.ToString()+"  " +tmp.populationSize.ToString());
                        b += (float)item.fitnessValue;
                    }
                    c = (b / pop.population.Count) / testnumber;
                    sum[popnumber] += c;
                    if (tab[i] <= tmpbest)
                    {
                        best[popnumber]    = b / pop.population.Count;
                        bgfbest[popnumber] = (float)pop.NajlepszaFitness;
                        bestresult         = pop.NajlepszaFitness;
                        tmpbest            = tab[i];
                    }

                    if (tab[i] >= tmpworst)
                    {
                        worst[popnumber]    = b / pop.population.Count;
                        bgfworst[popnumber] = (float)pop.NajlepszaFitness;
                        worstresult         = pop.NajlepszaFitness;
                        tmpworst            = tab[i];
                    }
                    popnumber++;
                }
            }

            frm.richTextBox1.AppendText("Średnie wartości funkci: " + wynik / testnumber + "\n" + "\n");
            frm.richTextBox1.AppendText("Najlepsza wartość funkcji: " + bestresult + "\n" + "\n");
            frm.richTextBox1.AppendText("Najgorsza wartość funkcji: " + worstresult + "\n" + "\n");
            frm.richTextBox1.AppendText("Procent sukcesu: " + percentsucess / testnumber * 100 + "%" + "\n" + "\n");

            var scena = new ILScene();

            using (ILScope.Enter())
            {
                ILArray <float> AV       = sum;
                ILArray <float> BEST     = best;
                ILArray <float> WORST    = worst;
                ILArray <float> BGFworst = bgfworst;
                ILArray <float> BGFbest  = bgfbest;
                ILArray <float> BGFav    = bgfav;
                ILArray <float> GLOBAL   = globalmin;
                var             plot     = scena.Add(new ILPlotCube()
                {
                    ScreenRect = new RectangleF(0, 0, 1, 0.4f),
                    Children   = { new ILLinePlot(AV.T,  lineColor:Color.Yellow),
                                   new ILLinePlot(BEST.T,  lineColor:Color.Blue),
                                   new ILLinePlot(WORST.T, lineColor:Color.Red), }
                });

                var plot1 = scena.Add(new ILPlotCube()
                {
                    ScreenRect = new RectangleF(0, 0.33f, 1, 0.4f),
                    Children   = { new ILLinePlot(BGFav.T,  lineColor:Color.Yellow),
                                   new ILLinePlot(BGFbest.T,  lineColor:Color.Blue),
                                   new ILLinePlot(BGFworst.T, lineColor:Color.Red), },
                });

                var plot2 = scena.Add(new ILPlotCube()
                {
                    ScreenRect = new RectangleF(0, 0.66f, 1, 0.3f),
                    Children   = { new ILLinePlot(GLOBAL.T, markerStyle: MarkerStyle.Diamond, lineColor: Color.Black) },
                });

                var dg2 = plot2.AddDataGroup();
                dg2.Add(new ILLinePlot(GLOBAL.T, markerStyle: MarkerStyle.Diamond, lineColor: Color.Red));//,lineColor: Color.Red));
                dg2.ScaleModes.YAxisScale = AxisScale.Logarithmic;
                var axisY2 = plot2.Axes.Add(new ILAxis(dg2)
                {
                    AxisName = AxisNames.YAxis,
                    Position = new Vector3(1, 0, 0),
                    Label    = { Text = "osiągnięte minimum (log)", Color = Color.Red },
                    Ticks    = { DefaultLabel = { Color = Color.Red } }
                });


                frm.ilgraf.Scene = scena;
                frm.Show();
            }
        }
Esempio n. 6
0
        public List <Populacja> PSOALG(Populacja p)
        {
            Random ran      = new Random();
            double minBound = p.minX;
            double maxBound = p.maxX;
            double minV     = -1.0 * maxBound;
            double maxV     = maxBound;

            int iteracja = 0;

            double[] NajlepszaPozycja = new double[p.dim];
            double   NajlepszaFitness = double.MaxValue;

            List <Populacja> roj = new List <Populacja>();

            roj.Add(p);

            foreach (Particle item in p.population)
            {
                if (item.fitnessValue < NajlepszaFitness)
                {
                    NajlepszaFitness = item.fitnessValue;
                    item.position.CopyTo(NajlepszaPozycja, 0);
                }
                p.NajlepszaPozycja = new double[p.dim];
                NajlepszaPozycja.CopyTo(p.NajlepszaPozycja, 0);
                p.NajlepszaFitness = NajlepszaFitness;
            }

            double r1, r2; // poznawczy i ogólne spułczynniki randoma

            // tworzenie roju ->swam

            while (iteracja < nrIteracji)
            {
                ++iteracja;
                Populacja currP2      = new Populacja(p.type);
                double[]  newVelocity = new double[p.dim];
                double[]  newPosition = new double[p.dim];
                double    newFitness;

                foreach (Particle item in roj.Last().population)
                {
                    if (linearinertia)
                    {
                        this.w = setw(iteracja);
                    }

                    // główna pętla PSO przejście przez wszystkie iteracje
                    for (int j = 0; j < item.velocity.Length; ++j)
                    {
                        if (r1r2)
                        {
                            r1 = ran.NextDouble();
                            r2 = ran.NextDouble();
                        }
                        else
                        {
                            r1 = 1;
                            r2 = 1;
                        }

                        newVelocity[j] = (w * item.velocity[j]) +
                                         (c1 * r1 * (item.bestPosition[j] - item.position[j])) +
                                         (c2 * r2 * (NajlepszaPozycja[j] - item.position[j]));

                        if (newVelocity[j] < minV)
                        {
                            newVelocity[j] = minV;
                        }
                        else if (newVelocity[j] > maxV)
                        {
                            newVelocity[j] = maxV;
                        }
                    }

                    newVelocity.CopyTo(item.velocity, 0);

                    for (int j = 0; j < item.position.Length; ++j)
                    {
                        newPosition[j] = item.position[j] + newVelocity[j];
                        if (newPosition[j] < minBound)
                        {
                            newPosition[j] = minBound;
                        }
                        else if (newPosition[j] > maxBound)
                        {
                            newPosition[j] = maxBound;
                        }
                    }
                    Particle best = new Particle(p.dim);
                    newPosition.CopyTo(item.position, 0);
                    newPosition.CopyTo(best.position, 0);
                    Particle.ObliczIndiwFitness(best);
                    newFitness        = best.fitnessValue;
                    item.fitnessValue = newFitness;

                    if (newFitness < item.bestFitness)
                    {
                        newPosition.CopyTo(item.bestPosition, 0);
                        item.bestFitness = newFitness;
                    }

                    if (newFitness < NajlepszaFitness)
                    {
                        newPosition.CopyTo(NajlepszaPozycja, 0);
                        NajlepszaFitness = newFitness;
                    }
                    Particle tmp = new Particle(p.dim);


                    //kopia
                    Particle.copy(item, tmp);
                    currP2.population.Add(tmp);
                    roj.Last().NajlepszaPozycja = new double[p.dim];
                    NajlepszaPozycja.CopyTo(roj.Last().NajlepszaPozycja, 0);
                    roj.Last().NajlepszaFitness = NajlepszaFitness;
                }

                roj.Add(currP2);
            }
            return(roj);
        }