public static float calculateSingleKernel(TrainingUnit xi, TrainingUnit xj, SVM ProblemSolution)
            {
                ProblemConfig problemConfig = ProblemSolution.ProblemCfg;

                // Vectors size check
                //if (xi.getDimension() != xj.getDimension()) return 0;
                // Linear: u'*v (inner product)
                if (problemConfig.kernelType == ProblemConfig.KernelType.Linear)
                {
                    float sum = 0;
                    for (int i = 0; i < xi.getDimension(); i++)
                    {
                        sum += xi.xVector[i] * xj.xVector[i];
                    }
                    return(sum);
                }
                // Radial basis function: exp(-gamma*|u-v|^2)
                if (problemConfig.kernelType == ProblemConfig.KernelType.RBF)
                {
                    // Gamma is, by choice, 1 / (number of features).
                    float sum = 0, temp;
                    for (int i = 0; i < xi.getDimension(); i++)
                    {
                        temp = xi.xVector[i] - xj.xVector[i];
                        sum += temp * temp;
                    }
                    return((float)Math.Exp(-ProblemSolution.ProblemCfg.lambda * sum));
                }
                return(0);
            }
Esempio n. 2
0
            public static float calculateSingleKernel(TrainingUnit xi, TrainingUnit xj,SVM ProblemSolution)
            {
                ProblemConfig problemConfig = ProblemSolution.ProblemCfg;

                // Vectors size check
                //if (xi.getDimension() != xj.getDimension()) return 0;
                // Linear: u'*v (inner product)
                if (problemConfig.kernelType == ProblemConfig.KernelType.Linear)
                {
                    float sum = 0;
                    for (int i = 0; i < xi.getDimension(); i++)
                    {
                        sum += xi.xVector[i] * xj.xVector[i];
                    }
                    return sum;
                }
                // Radial basis function: exp(-gamma*|u-v|^2)
                if (problemConfig.kernelType == ProblemConfig.KernelType.RBF)
                {
                    // Gamma is, by choice, 1 / (number of features).
                    float sum = 0, temp;
                    for (int i = 0; i < xi.getDimension(); i++)
                    {
                        temp = xi.xVector[i] - xj.xVector[i];
                        sum += temp * temp;
                    }
                    return  (float)Math.Exp(-ProblemSolution.ProblemCfg.lambda * sum);
                }
                return 0;
            }
Esempio n. 3
0
 /// <summary>Adds a new training unit to the set</summary>
 /// <param name="newTrainingUnit">New training unit to add</param>
 public void addTrainingUnit(TrainingUnit newTrainingUnit)
 {
     if (p != 0)
     {
         if (p == newTrainingUnit.getDimension())
         {
             trainingArray.Add(newTrainingUnit);
         }
         else
         {
             // Invalid entry, not equal in size to the others training units
             // Do nothing
         }
     }
     else // The first training set is being added
     {
         p = newTrainingUnit.getDimension();
         trainingArray.Add(newTrainingUnit);
     }
 }
Esempio n. 4
0
 /// <summary>Adds a new training unit to the set</summary>
 /// <param name="newTrainingUnit">New training unit to add</param>
 public void addTrainingUnit(TrainingUnit newTrainingUnit)
 {
     if (p != 0)
     {
         if (p == newTrainingUnit.getDimension())
         {
             trainingArray.Add(newTrainingUnit);
         }
         else
         {
             // Invalid entry, not equal in size to the others training units
             // Do nothing
         }
     }
     else // The first training set is being added
     {
         p = newTrainingUnit.getDimension();
         trainingArray.Add(newTrainingUnit);
     }
 }