Esempio n. 1
0
        private void PropogateError(TrainingData ts, int batchSize)
        {
            // Initialize the error from the future
            List <Vector <double> > futureErrorCache = new List <Vector <double> >();

            for (var i = 0; i < Layers.Count; i++)
            {
                futureErrorCache.Add(new DenseVector(Layers[i].OutputDimension)); // Only store the error relevant to that layer
            }
            // Step backwards through the memory
            for (var t = OutputCache.Count - 1; t > 0; t--)
            {
                // Error on the output layer from the training data
                Vector <double> error = CostFunc.Derivative(ts[t - 1].Response, OutputCache[t].Last());
                // Step backwards through the net.
                for (var i = Layers.Count - 1; i >= 0; i--)
                {
                    error += futureErrorCache[i];
                    Vector <double> lastInput       = Concatenate(Layers[i].InputDimension, OutputCache[t - 1][i + 1], OutputCache[t][i]);// [t-1][i+1] is the output of the current layer at a previous time
                    Vector <double> jointInputError = Layers[i].PropogateError(error, LearningRate / batchSize, lastInput);
                    Vector <double> pastStateError;

                    // If this is the first layer, error would be the error on the training input, so we can just ignore it.
                    Split(jointInputError, Layers[i].OutputDimension, out pastStateError, out error, OutputCache[t][i]?.Count ?? 1);
                    futureErrorCache[i] = pastStateError; // Store the most recent error from the future.
                }
            }
        }
Esempio n. 2
0
        static void LoadXOR(out HashSet <TrainingData> data, int length, int nData)
        {
            data = new HashSet <TrainingData>();
            ContinuousUniform rand = new ContinuousUniform(0, 1);

            for (var i = 0; i < nData; i++)
            {
                TrainingData td = new TrainingData(1, 1);
                td[0] = new TrainingData.TrainingPair(DenseVector.Create(1, rand.Sample() > 0.5 ? 1 : 0), DenseVector.Create(1, 0.5));
                for (var j = 1; j < length; j++)
                {
                    TrainingData.TrainingPair p = new TrainingData.TrainingPair();
                    p.Data = DenseVector.Create(1, rand.Sample() > 0.5 ? 1 : 0);
                    if (td[j - 1].Data[0] == p.Data[0])
                    {
                        p.Response = DenseVector.Create(1, 0);
                    }
                    else
                    {
                        p.Response = DenseVector.Create(1, 1);
                    }
                    td[j] = p;
                }
                data.Add(td);
            }
        }
Esempio n. 3
0
        static void TrainAutoEncoder()
        {
            MenuModel.LoadTrainingSet("newMnist_test", "newMnist_test.csv");
            MenuModel.LoadTestSet("newMnist_test", "newMnist_test.csv");

            AutoEncoder net = new AutoEncoder(activationGoal: 0.2, sparsityWeight: 30);

            net.SetParameters(learningRate: 1, costFunc: CostFunction.MeanSquare);
            net.Add(new Layer(784, 100, ActivationFunction.Sigmoid));

            MenuModel.CurrentNet = net;

            MenuModel.SelectTest("newMnist_test");
            MenuModel.SelectTrain("newMnist_test");
            MenuModel.TestSampleFreq = 10;
            MenuModel.AddTestMonitor(PrintToScreen, 10101010);

            Console.WriteLine("Done Loading");
            MenuModel.TrainNet(10, 100);
            using (StreamWriter fout = new StreamWriter("autoEncoded.txt"))
            {
                Matrix <double> w = (net[0] as Layer).Weights;

                for (var i = 0; i < w.ColumnCount; i++)
                {
                    StringBuilder line = new StringBuilder();
                    for (var j = 0; j < w.RowCount; j++)
                    {
                        line.Append(w[j, i] + " ");
                    }
                    line.Remove(line.Length - 1, 1);
                    fout.WriteLine(line.ToString());
                }
            }
            using (StreamWriter fout = new StreamWriter("replication.txt"))
            {
                TrainingData    td     = MenuModel.SelectedTest.First();
                Vector <double> output = net.Process(td.Data);

                StringBuilder line = new StringBuilder();
                for (var j = 0; j < output.Count; j++)
                {
                    line.Append(output[j] + " ");
                }
                line.Remove(line.Length - 1, 1);
                fout.WriteLine(line.ToString());

                line = new StringBuilder();
                for (var j = 0; j < td.Data.Count; j++)
                {
                    line.Append(td.Data[j] + " ");
                }
                line.Remove(line.Length - 1, 1);
                fout.WriteLine(line.ToString());
            }
        }
Esempio n. 4
0
        public TrainingData SubSequence(int start, int end)
        {
            int          dir = Math.Sign(end - start);
            TrainingData td  = new TrainingData();

            for (var i = start; i < end; i += dir)
            {
                td.data.Add(data[i]);
                td.response.Add(response[i]);
            }
            return(td);
        }
Esempio n. 5
0
        internal double TestOne(TrainingData ts)
        {
            double          err = 0;
            Vector <double> output;

            WipeMemory();
            foreach (TrainingData.TrainingPair pair in ts)
            {
                output           = Process(pair.Data);
                err             += (output - pair.Response).L1Norm();
                PreviousResponse = pair.Response;
            }
            return(err / ts.Count);
        }
Esempio n. 6
0
        static void LoadSin(out HashSet <TrainingData> data, int n)
        {
            data = new HashSet <TrainingData>();
            ContinuousUniform rand = new ContinuousUniform(0, Math.PI);

            for (var i = 0; i < n; i++)
            {
                double       x     = rand.Sample();
                TrainingData td    = new TrainingData(1, 1);
                double       scale = Math.PI;
                td.Data[0]  = x / scale;
                td.Response = DenseVector.Create(1, Math.Sin(x));

                data.Add(td);
            }
        }
Esempio n. 7
0
        static void LoadSinSeq(out HashSet <TrainingData> data, double dt, int seqLength, int nData)
        {
            data = new HashSet <TrainingData>();
            ContinuousUniform rand = new ContinuousUniform(0, 2 * Math.PI);

            for (var i = 0; i < nData; i++)
            {
                double       theta = rand.Sample();
                TrainingData td    = new TrainingData(0, 1);
                for (var j = 0; j < seqLength; j++)
                {
                    TrainingData.TrainingPair pair = new TrainingData.TrainingPair();
                    theta        += dt;
                    pair.Response = DenseVector.Create(1, Math.Sin(theta));
                    td[j]         = pair;
                }
                data.Add(td);
            }
        }
Esempio n. 8
0
        static void LoadMultiplication(out HashSet <TrainingData> data, int digits, int n)
        {
            data = new HashSet <TrainingData>();
            DiscreteUniform rand = new DiscreteUniform(1, (int)Math.Pow(10, digits) - 1);

            for (var i = 0; i < n; i++)
            {
                double       x     = rand.Sample();
                double       y     = rand.Sample();
                double       z     = x * y;
                TrainingData td    = new TrainingData(2, 1);
                double       scale = Math.Pow(10, digits);
                td.Data[0]  = x / scale;
                td.Data[1]  = y / scale;
                td.Response = DenseVector.Create(1, z / Math.Pow(10, 2 * digits));

                data.Add(td);
            }
        }
Esempio n. 9
0
        private static bool LoadSet(string fp, out HashSet <TrainingData> data)
        {
            data = new HashSet <TrainingData>();
            bool success   = true;
            int  inputDim  = -1;
            int  outputDim = -1;

            try
            {
                using (StreamReader trainingIn = new StreamReader(fp))
                {
                    while (!trainingIn.EndOfStream)
                    {
                        string[] line        = trainingIn.ReadLine().Split(';');
                        string[] inputPiece  = line[0].Split(',');
                        string[] outputPiece = line[1].Split(',');

                        if ((inputDim != -1 && inputPiece.Length != inputDim) ||
                            (outputDim != -1 && outputPiece.Length != outputDim))
                        {
                            throw new TrainingDataException("Failed to load data set. Inconsistent lines found.");
                        }

                        TrainingData td = new TrainingData(inputPiece.Length, outputPiece.Length);
                        for (var i = 0; i < inputPiece.Length; i++)
                        {
                            td.Data[i] = double.Parse(inputPiece[i]);
                        }
                        for (var i = 0; i < outputPiece.Length; i++)
                        {
                            td.Response[i] = double.Parse(outputPiece[i]);
                        }
                        data.Add(td);
                    }
                }
            }
            catch (Exception ex) when(IsFileException(ex))
            {
                success = false;
            }
            return(success);
        }