GetSampleTargets() public static method

public static GetSampleTargets ( ) : double[]
return double[]
Esempio n. 1
0
        public void IfInputLengthDoesNotMatchNumInputs_Throw()
        {
            var    nn     = SampleInputs.GetSample1HiddenLayerPerceptron();
            Action action = () => nn.CalculateGradients(new[] { 0.0 }, SampleInputs.GetSampleTargets());

            action.ShouldThrow <NeuralNetworkException>()
            .WithMessage($"*Argument 'inputs' should have width {nn.NumInputs}; was 1.*");
        }
Esempio n. 2
0
        public void ShouldCalculateGrads_OneHiddenLayerCase()
        {
            // See MultilayerPerceptronTests.xlsx in this folder for calculations of
            // expected outputs.
            var nn     = SampleInputs.GetSample1HiddenLayerPerceptron();
            var result = nn.CalculateGradients(SampleInputs.GetSampleInputs(), SampleInputs.GetSampleTargets());

            result.Should().NotBeNullOrEmpty();
            result.Should().HaveCount(2);

            var expectedHiddenGrads = new[] { 0.00488574841598145, 0.00977149683196289, 0.0488574841598144, 0.00484248141480251, 0.00968496282960501, 0.0484248141480251, 0.00479817184666825, 0.0095963436933365, 0.0479817184666825 };
            var expectedOutputGrads = new[] { -0.185312455982592, -0.191635920938954, -0.197902455875597, -0.550909419851591, 0.185312455982592, 0.191635920938954, 0.197902455875597, 0.550909419851591 };

            result[1].ShouldApproximatelyEqual(expectedOutputGrads, 1e-12);
            result[0].ShouldApproximatelyEqual(expectedHiddenGrads, 1e-12);
        }
Esempio n. 3
0
        public void ShouldCalculateGrads_TwoHiddenLayersCase()
        {
            // See MultilayerPerceptronTests.xlsx in this folder for calculations of
            // expected outputs.
            var nn     = SampleInputs.GetSample2HiddenLayerPerceptron();
            var result = nn.CalculateGradients(SampleInputs.GetSampleInputs(), SampleInputs.GetSampleTargets());

            result.Should().NotBeNullOrEmpty();
            result.Should().HaveCount(3);

            var expectedHidden1Grads = new[] { 0.00197922538436067, 0.00395845076872135, 0.0197922538436067, 0.00200603359153654, 0.00401206718307308, 0.0200603359153654, 0.00203160809301684, 0.00406321618603367, 0.0203160809301684 };
            var expectedHidden2Grads = new[] { 0.00976178390929107, 0.0100948877912437, 0.0104249927460735, 0.0290204923445045, 0.00720465406099808, 0.00745050033849661, 0.00769413326721845, 0.0214184835440782 };
            var expectedOutputGrads  = new[] { -0.390542035775992, -0.44184361704256, -0.561729160466126, 0.390542035775992, 0.44184361704256, 0.561729160466125 };

            result[2].ShouldApproximatelyEqual(expectedOutputGrads, 1e-12);
            result[1].ShouldApproximatelyEqual(expectedHidden2Grads, 1e-12);
            result[0].ShouldApproximatelyEqual(expectedHidden1Grads, 1e-12);
        }