public RBF() // Use it for Testing One Sample from The Saved Data { Class = new ReadData[4]; Class[0] = new ReadData("\\Dataset\\Training Dataset\\Closing Eyes", 1); Class[1] = new ReadData("\\Dataset\\Training Dataset\\Looking Down", 2); Class[2] = new ReadData("\\Dataset\\Training Dataset\\Looking Front", 3); Class[3] = new ReadData("\\Dataset\\Training Dataset\\Looking Left", 4); }
public MLP(double pEta, int pEpochs, bool pBias, List <int> pNumNodesperHiddenLayer, bool readfile) { open = false; p = new Process(); numHiddenLayers = pNumNodesperHiddenLayer.Count; accuracy = 0; desiredOutputs_D = new int[4] { 0, 0, 0, 0 }; Errors = new double[4]; pNumNodesperHiddenLayer.Add(4); //num of weights_HO per output Layer NumNodesperEachLayer_IHO = pNumNodesperHiddenLayer; NumNodesperEachLayer_IHO.Insert(0, 19); biasLst = new List <List <double> >(); NumOfWeightsPerEachLayer = new List <int>(); NetInputs = new List <List <double> >(); actualOutputs = new List <List <double> >(); Deltas = new List <List <double> >(); int numOfPreviousWeights = 19; //intial of numof weights_HO for input weights_HO for (int i = 0; i < numHiddenLayers + 1; numOfPreviousWeights = pNumNodesperHiddenLayer[i + 1], i++) { NumOfWeightsPerEachLayer.Add((numOfPreviousWeights * pNumNodesperHiddenLayer[i + 1])); } Class = new ReadData[4]; Class[0] = new ReadData("\\Dataset\\Training Dataset\\Closing Eyes", 1); Class[1] = new ReadData("\\Dataset\\Training Dataset\\Looking Down", 2); Class[2] = new ReadData("\\Dataset\\Training Dataset\\Looking Front", 3); Class[3] = new ReadData("\\Dataset\\Training Dataset\\Looking Left", 4); Normalize_Data(); weights_HO = new List <List <double> >(); RandomList = new List <int>(); eta = pEta; Bias = pBias; epochs = pEpochs; if (readfile) { ReadWeightFromFile(); } else { Generate_Random_Weights(); } alpha = 1; confusionMatrix = new int[4, 4] { { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 }, { 0, 0, 0, 0 } }; }