static void Main(string[] args)
        {
            bool Kmeans        = true;
            bool GasSwitch     = false;
            bool KohonenSwitch = false;

            Thread.CurrentThread.CurrentCulture = new CultureInfo("en-US");
            NeuronGenerator NeuralGenerator = new NeuronGenerator();
            Configuration   Configuration   = new Configuration();
            Pointparser     Parser          = new Pointparser();

            Parser.Filepath = "zestaw1.txt";
            double                InitialXRange             = 2.0;
            double                InitialYRange             = 2.0; //describes initial square (centered at 0,0) from which the neurons are generated
            List <Neuron>         Neurons                   = NeuralGenerator.GetNeurons(Configuration.GetAmountOfNeurons(), InitialXRange, InitialYRange);
            List <Point>          TrainingPointsList        = Parser.Parse();
            KohonenLearning       NeuralNetworkKohonenStyle = new KohonenLearning(Neurons, TrainingPointsList, Configuration);
            NeuralGas             NeuralNetworkGasStyle     = new NeuralGas(Neurons, TrainingPointsList, Configuration, NeuralGenerator);
            VoronoiDiagramContext DiagramContext            = new VoronoiDiagramContext
            {
                Width  = 1366,
                Height = 768,
                MinX   = TrainingPointsList.Min(point => point.XCoordinate) - 0.5,
                MaxX   = TrainingPointsList.Max(point => point.XCoordinate) + 0.5,
                MinY   = TrainingPointsList.Min(point => point.YCoordinate) - 0.5,
                MaxY   = TrainingPointsList.Max(point => point.YCoordinate) + 0.5,
            };

            if (KohonenSwitch)
            {
                for (int i = 0; i < 100; i++)
                {
                    if (i % 10 == 0)
                    {
                        Console.WriteLine("Progress o 10 %");
                    }
                    NeuralNetworkKohonenStyle.Train(i);
                    IEnumerable <Point> Points = NeuralNetworkKohonenStyle.ReturnNeuronsAsPoints();
                    VoronoiDiagram.CreateImage(DiagramContext, Points, TrainingPointsList).Save("Kohonen" + i.ToString("D3") + ".png");
                }
            }
            else if (GasSwitch)
            {
                for (int i = 0; i < 500; i++)
                {
                    if (i % 50 == 0)
                    {
                        Console.WriteLine("Progress o 10 %");
                    }
                    NeuralNetworkGasStyle.Train(i);
                    IEnumerable <Point> Points = NeuralNetworkGasStyle.ReturnNeuronsAsPoints();
                    VoronoiDiagram.CreateImage(DiagramContext, Points, TrainingPointsList).Save("NeuralGas" + i.ToString("D3") + ".png");
                }
            }
            else if (Kmeans)
            {
                KSrednie KMeans = new KSrednie(10, 10, 10, TrainingPointsList, 150);
                Parser.ParseOut(KMeans.Clusterize(DiagramContext));
            }
        }
Esempio n. 2
0
        public List <Point> Clusterize(VoronoiDiagramContext Context)
        {
            Neurons = NeurGen.GetNeurons(ClusterCount, Xrange, Yrange);
            foreach (Point Point in Points)
            {
                double ClosestDistance = double.MaxValue;
                int    BestSoFar       = -1;
                for (int i = 0; i < ClusterCount; i++)
                {
                    if (Neurons[i].CalculateDistanceFrom(Point) < ClosestDistance)
                    {
                        //		Console.WriteLine("Distance from Neuron" + i.ToString() + Neurons[i].CalculateDistanceFrom(Point) );
                        BestSoFar       = i;
                        ClosestDistance = Neurons[i].CalculateDistanceFrom(Point);
                    }
                }
                Clusters[BestSoFar].Add(Point);
                //Console.WriteLine("Assigned to: " + BestSoFar.ToString());
            }
            ;
            for (int Iteration = 0; Iteration < MaxIters; Iteration++)
            {
                Point Err = new Point(Iteration, 0.0);
                for (int i = 0; i < ClusterCount; i++)
                {
                    {
                        Double ErrorComponent = 0.0;
                        Point  Mean           = CalculateMean(Clusters[i]);
                        ErrorComponent   = Neurons[i].CalculateDistanceFrom(Mean);
                        Err.YCoordinate += ErrorComponent;
//if(Iteration == 0 || Iteration == 1)		Console.WriteLine(i.ToString() + Neurons[i].GetAsPoint().XCoordinate + " " + Neurons[i].GetAsPoint().YCoordinate + " MEAN " + Mean.XCoordinate + " " + Mean.YCoordinate);
                        Neurons[i].UpdateWeight(Mean.XCoordinate, Mean.YCoordinate);
                    }
                    Error.Add(Err);
                }
                ;

                //reassign clusters;
                for (int i = 0; i < ClusterCount; i++)
                {
                    Clusters[i] = new List <Point>();
                }

                foreach (Point Point in Points)
                {
                    double ClosestDistance = double.MaxValue;
                    int    BestSoFar       = -1;
                    for (int i = 0; i < ClusterCount; i++)
                    {
                        if (Neurons[i].CalculateDistanceFrom(Point) < ClosestDistance)
                        {
                            BestSoFar       = i;
                            ClosestDistance = Neurons[i].CalculateDistanceFrom(Point);
                        }
                    }
                    Clusters[BestSoFar].Add(Point);
                }
                ;
                List <Point> Voro = new List <Point>();
                foreach (Neuron Neuron in Neurons)
                {
                    Voro.Add(Neuron.GetAsPoint());
                }
                VoronoiDiagram.CreateImage(Context, Voro).Save("KMEANS" + Iteration.ToString() + "Means" + ClusterCount.ToString() + ".png");
            }
            return(Error);
        }