Esempio n. 1
0
        /// <summary>
        /// This method was written by Ted Dunsford by restructuring the nearest neighbor
        /// algorithm presented by Andrew and Bjoern
        /// </summary>
        /// <param name="kd">Since this is recursive, this represents the current node</param>
        /// <param name="target">The target is the HPoint that we are trying to calculate the farthest distance from</param>
        /// <param name="hr">In this case, the hr is the hyper rectangle bounding the region that must contain the furthest point.</param>
        /// <param name="maxDistSqd">The maximum distance that we have calculated thus far, and will therefore be testing against.</param>
        /// <param name="lev">The integer based level of that we have recursed to in the tree</param>
        /// <param name="k">The dimensionality of the kd tree</param>
        /// <param name="fnl">A list to contain the output, prioritized by distance</param>
        public static void FarthestNeighbor(KdNode kd, HPoint target, HRect hr,
                              double maxDistSqd, int lev, int k,
                              FarthestNeighborList fnl)
        {

            // 1. if kd is empty then set dist-sqd to infinity and exit.
            if (kd == null)
            {
                return;
            }

            // 2. s := split field of kd
            int s = lev % k;

            // 3. pivot := dom-elt field of kd
            HPoint pivot = kd._k;
            double pivotToTarget = HPoint.SquareDistance(pivot, target);

            // 4. Cut hr into to sub-hyperrectangles left-hr and right-hr.
            //    The cut plane is through pivot and perpendicular to the s
            //    dimension.
            HRect leftHr = hr; // optimize by not cloning
            HRect rightHr = hr.Copy();
            leftHr._max[s] = pivot[s];
            rightHr._min[s] = pivot[s];

            // 5. target-in-left := target_s <= pivot_s
            bool targetInLeft = target[s] < pivot[s];

            KdNode nearerKd;
            HRect nearerHr;
            KdNode furtherKd;
            HRect furtherHr;

            // 6. if target-in-left then
            //    6.1. nearer-kd := left field of kd and nearer-hr := left-hr
            //    6.2. further-kd := right field of kd and further-hr := right-hr
            if (targetInLeft)
            {
                nearerKd = kd._left;
                nearerHr = leftHr;
                furtherKd = kd._right;
                furtherHr = rightHr;
            }
            //
            // 7. if not target-in-left then
            //    7.1. nearer-kd := right field of kd and nearer-hr := right-hr
            //    7.2. further-kd := left field of kd and further-hr := left-hr
            else
            {
                nearerKd = kd._right;
                nearerHr = rightHr;
                furtherKd = kd._left;
                furtherHr = leftHr;
            }

            // 8. Recursively call Nearest Neighbor with paramters
            //    (nearer-kd, target, nearer-hr, max-dist-sqd), storing the
            //    results in nearest and dist-sqd
            //FarthestNeighbor(nearer_kd, target, nearer_hr, max_dist_sqd, lev + 1, K, nnl);
            
            // This line changed by Ted Dunsford to attempt to find the farther point
            FarthestNeighbor(furtherKd, target, furtherHr, maxDistSqd, lev + 1, k, fnl);

            //KDNode nearest = (KDNode)nnl.Highest;
            double distSqd;

            if (!fnl.IsCapacityReached)
            {
                //dist_sqd = 1.79769e+30;// Double.MaxValue;
                distSqd = 0;
            }
            else
            {
                distSqd = fnl.MinimumPriority;
            }

            // 9. max-dist-sqd := minimum of max-dist-sqd and dist-sqd
            //max_dist_sqd = Math.Min(max_dist_sqd, dist_sqd);

            maxDistSqd = Math.Max(maxDistSqd, distSqd);

            // 10. A nearer point could only lie in further-kd if there were some
            //     part of further-hr within distance sqrt(max-dist-sqd) of
            //     target.  If this is the case then
            // HPoint closest = further_hr.Closest(target);
            HPoint furthest = nearerHr.Farthest(target);
            //if (HPoint.EuclideanDistance(closest, target) < Math.Sqrt(max_dist_sqd))
            if(HPoint.EuclideanDistance(furthest, target) > Math.Sqrt(maxDistSqd))
            {

                // 10.1 if (pivot-target)^2 < dist-sqd then
                if (pivotToTarget > distSqd)
                {

                    // 10.1.1 nearest := (pivot, range-elt field of kd)
                    //nearest = kd;

                    // 10.1.2 dist-sqd = (pivot-target)^2
                    distSqd = pivotToTarget;

                    // add to nnl
                    if (!kd.IsDeleted)
                    {
                        fnl.Insert(kd, distSqd);
                    }

                    // 10.1.3 max-dist-sqd = dist-sqd
                    // max_dist_sqd = dist_sqd;
                    if (fnl.IsCapacityReached)
                    {
                        maxDistSqd = fnl.MinimumPriority;
                    }
                    else
                    {
                        // max_dist_sqd = 1.79769e+30;//Double.MaxValue;
                        maxDistSqd = 0;
                    }
                }

                // 10.2 Recursively call Nearest Neighbor with parameters
                //      (further-kd, target, further-hr, max-dist_sqd),
                //      storing results in temp-nearest and temp-dist-sqd
                FarthestNeighbor(nearerKd, target, nearerHr, maxDistSqd, lev + 1, k, fnl);
                KdNode tempFarthest = (KdNode)fnl.Farthest;
                double tempDistSqd = fnl.MinimumPriority;

                // 10.3 If tmp-dist-sqd < dist-sqd then
                if (tempDistSqd > distSqd)
                {

                    // 10.3.1 nearest := temp_nearest and dist_sqd := temp_dist_sqd
                    distSqd = tempDistSqd;
                }
            }

            // SDL: otherwise, current point is nearest
            else if (pivotToTarget < maxDistSqd)
            {
                distSqd = pivotToTarget;
            }
        }
Esempio n. 2
0
        /// <summary>
        /// Find KD-tree nodes whose keys are <I>n</I> farthest neighbors from
        /// key.  Neighbors are returned in descending order of distance to key. 
        /// </summary>
        /// <param name="key">key for KD-tree node</param>
        /// <param name="numNeighbors">The Integer showing how many neighbors to find</param>
        /// <returns>An array of objects at the node nearest to the key</returns>
        /// <exception cref="KeySizeException">Mismatch if key length doesn't match the dimension for the tree</exception>
        /// <exception cref="NeighborsOutOfRangeException">if <I>n</I> is negative or exceeds tree size </exception>
        public object[] Farthest(double[] key, int numNeighbors)
        {
            if (numNeighbors < 0 || numNeighbors > _count) throw new NeighborsOutOfRangeException();

            if (key.Length != _k) throw new KeySizeException();


            object[] neighbors = new object[numNeighbors];
            FarthestNeighborList fnl = new FarthestNeighborList(numNeighbors);

            // initial call is with infinite hyper-rectangle and max distance
            HRect hr = HRect.InfiniteHRect(key.Length);
            //double max_dist_sqd = 1.79769e+30;//Double.MaxValue;
            HPoint keyp = new HPoint(key);
            KdNode.FarthestNeighbor(_root, keyp, hr, 0, 0, _k, fnl);
            //KDNode.nnbr(_root, keyp, hr, max_dist_sqd, 0, _k, nnl);

            for (int i = 0; i < numNeighbors; ++i)
            {
                KdNode kd = (KdNode)fnl.RemoveFarthest();
                neighbors[numNeighbors - i - 1] = kd._v;
            }

            return neighbors;
        }