/// <summary> /// image remap. Not affecting Alpha. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="pXMap">Device memory pointer to 2D image array of X coordinate values to be used when sampling source image. </param> /// <param name="pYMap">Device memory pointer to 2D image array of Y coordinate values to be used when sampling source image. </param> /// <param name="eInterpolation">The type of eInterpolation to perform resampling.</param> public void RemapA(NPPImage_8uC4 dst, NPPImage_32fC1 pXMap, NPPImage_32fC1 pYMap, InterpolationMode eInterpolation) { NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi); status = NPPNativeMethods.NPPi.Remap.nppiRemap_8u_AC4R(_devPtr, _sizeRoi, _pitch, srcRect, pXMap.DevicePointerRoi, pXMap.Pitch, pYMap.DevicePointerRoi, pYMap.Pitch, dst.DevicePointerRoi, dst.Pitch, dst.SizeRoi, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiRemap_8u_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Determines if the rectangular region represented by rect is entirely contained within this Rectangle structure. /// </summary> /// <param name="rect"></param> /// <returns></returns> public bool Contains(NppiRect rect) { return Contains(rect.Location) && Contains(rect.Location + rect.Size); }
/// <summary> /// Returns a third Rectangle structure that represents the intersection of two other Rectangle structures.If there is no intersection, an empty Rectangle is returned. /// </summary> /// <param name="rectA"></param> /// <param name="rectB"></param> /// <returns></returns> public static NppiRect Intersect(NppiRect rectA, NppiRect rectB) { int iX = rectA.Left; if (iX < rectB.Left) { iX = rectB.Left; } int iY = rectA.Top; if (iY < rectB.Top) { iY = rectB.Top; } int iX2 = rectA.Right; if (iX2 > rectB.Right) { iX2 = rectB.Right; } int iY2 = rectA.Bottom; if (iY2 > rectB.Bottom) { iY2 = rectB.Bottom; } int iWidth = iX2 - iX + 1; int iHeight = iY2 - iY + 1; if (iWidth <= 0 || iHeight <= 0) { iX = 0; iY = 0; iWidth = 0; iHeight = 0; } return new NppiRect(iX, iY, iWidth, iHeight); }
/// <summary> /// per element Divide /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Divide(int src, NppiRect value) { NppiRect ret = new NppiRect(src / value.x, src / value.y, src / value.width, src / value.height); return ret; }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Divide(NppiSize src, NppiRect value) { NppiRect ret = new NppiRect(value.x, value.y, src.width / value.width, src.height / value.height); return ret; }
/// <summary> /// per element Multiply /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Multiply(int src, NppiRect value) { NppiRect ret = new NppiRect(src * value.x, src * value.y, src * value.width, src * value.height); return ret; }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Multiply(NppiSize src, NppiRect value) { NppiRect ret = new NppiRect(value.x, value.y, src.width * value.width, src.height * value.height); return ret; }
/// <summary> /// Perspective transform of an image. Not affecting Alpha channel.<para/> /// This function performs perspective warping of a the specified /// quadrangle in the source image to the specified quadrangle in the /// destination image. The function nppiWarpPerspectiveQuad uses the same /// formulas for pixel mapping as in nppiWarpPerspective function. The /// transform coefficients are computed internally. /// The transformed part of the source image is resampled using the specified /// interpolation method and written to the destination ROI.<para/> /// NPPI specific recommendation: <para/> /// The function operates using 2 types of kernels: fast and accurate. The fast /// method is about 4 times faster than its accurate variant, /// but doesn't perform memory access checks and requires the destination ROI /// to be 64 bytes aligned. Hence any destination ROI is /// chunked into 3 vertical stripes: the first and the third are processed by /// accurate kernels and the central one is processed by the fast one. /// In order to get the maximum available speed of execution, the projection of /// destination ROI onto image addresses must be 64 bytes aligned. This is /// always true if the values <para/> /// <code>(int)((void *)(pDst + dstRoi.x))</code> and <para/> /// <code>(int)((void *)(pDst + dstRoi.x + dstRoi.width))</code> <para/> /// are multiples of 64. Another rule of thumb is to specify destination ROI in /// such way that left and right sides of the projected image are separated from /// the ROI by at least 63 bytes from each side. However, this requires the /// whole ROI to be part of allocated memory. In case when the conditions above /// are not satisfied, the function may decrease in speed slightly and will /// return NPP_MISALIGNED_DST_ROI_WARNING warning. /// </summary> /// <param name="srcQuad">Source quadrangle [4,2]</param> /// <param name="dest">Destination image</param> /// <param name="destQuad">Destination quadrangle [4,2]</param> /// <param name="eInterpolation">Interpolation mode: can be <see cref="InterpolationMode.NearestNeighbor"/>, <see cref="InterpolationMode.Linear"/> or <see cref="InterpolationMode.Cubic"/></param> public void WarpPerspectiveQuadA(double[,] srcQuad, NPPImage_32sC4 dest, double[,] destQuad, InterpolationMode eInterpolation) { NppiRect rectIn = new NppiRect(_pointRoi, _sizeRoi); NppiRect rectOut = new NppiRect(dest.PointRoi, dest.SizeRoi); status = NPPNativeMethods.NPPi.PerspectiveTransforms.nppiWarpPerspectiveQuad_32s_AC4R(_devPtr, _sizeOriginal, _pitch, rectIn, srcQuad, dest.DevicePointer, dest.Pitch, rectOut, destQuad, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiWarpPerspectiveQuad_32s_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// Perspective transform of an image.<para/> /// This function performs perspective warping of a the specified /// quadrangle in the source image to the specified quadrangle in the /// destination image. The function nppiWarpPerspectiveQuad uses the same /// formulas for pixel mapping as in nppiWarpPerspective function. The /// transform coefficients are computed internally. /// The transformed part of the source image is resampled using the specified /// interpolation method and written to the destination ROI.<para/> /// NPPI specific recommendation: <para/> /// The function operates using 2 types of kernels: fast and accurate. The fast /// method is about 4 times faster than its accurate variant, /// but doesn't perform memory access checks and requires the destination ROI /// to be 64 bytes aligned. Hence any destination ROI is /// chunked into 3 vertical stripes: the first and the third are processed by /// accurate kernels and the central one is processed by the fast one. /// In order to get the maximum available speed of execution, the projection of /// destination ROI onto image addresses must be 64 bytes aligned. This is /// always true if the values <para/> /// <code>(int)((void *)(pDst + dstRoi.x))</code> and <para/> /// <code>(int)((void *)(pDst + dstRoi.x + dstRoi.width))</code> <para/> /// are multiples of 64. Another rule of thumb is to specify destination ROI in /// such way that left and right sides of the projected image are separated from /// the ROI by at least 63 bytes from each side. However, this requires the /// whole ROI to be part of allocated memory. In case when the conditions above /// are not satisfied, the function may decrease in speed slightly and will /// return NPP_MISALIGNED_DST_ROI_WARNING warning. /// </summary> /// <param name="src0">Source image (Channel 0)</param> /// <param name="src1">Source image (Channel 1)</param> /// <param name="src2">Source image (Channel 2)</param> /// <param name="srcQuad">Source quadrangle [4,2]</param> /// <param name="dest0">Destination image (Channel 0)</param> /// <param name="dest1">Destination image (Channel 1)</param> /// <param name="dest2">Destination image (Channel 2)</param> /// <param name="destQuad">Destination quadrangle [4,2]</param> /// <param name="eInterpolation">Interpolation mode: can be <see cref="InterpolationMode.NearestNeighbor"/>, <see cref="InterpolationMode.Linear"/> or <see cref="InterpolationMode.Cubic"/></param> public static void WarpPerspectiveQuad(NPPImage_32sC1 src0, NPPImage_32sC1 src1, NPPImage_32sC1 src2, double[,] srcQuad, NPPImage_32sC1 dest0, NPPImage_32sC1 dest1, NPPImage_32sC1 dest2, double[,] destQuad, InterpolationMode eInterpolation) { NppiRect rectIn = new NppiRect(src0.PointRoi, src0.SizeRoi); NppiRect rectOut = new NppiRect(dest0.PointRoi, dest0.SizeRoi); CUdeviceptr[] src = new CUdeviceptr[] { src0.DevicePointer, src1.DevicePointer, src2.DevicePointer }; CUdeviceptr[] dst = new CUdeviceptr[] { dest0.DevicePointer, dest1.DevicePointer, dest2.DevicePointer }; NppStatus status = NPPNativeMethods.NPPi.PerspectiveTransforms.nppiWarpPerspectiveQuad_32s_P4R(src, src0.Size, src0.Pitch, rectIn, srcQuad, dst, dest0.Pitch, rectOut, destQuad, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiWarpPerspectiveQuad_32s_P4R", status)); NPPException.CheckNppStatus(status, null); }
/// <summary> /// Calculates affine transform projection of given source rectangular ROI /// </summary> /// <param name="coeffs">Affine transform coefficients [2,3]</param> /// <returns>Destination quadrangle [4,2]</returns> public double[,] GetAffineQuad(double[,] coeffs) { double[,] quad = new double[4, 2]; NppiRect rect = new NppiRect(_pointRoi, _sizeRoi); status = NPPNativeMethods.NPPi.AffinTransforms.nppiGetAffineQuad(rect, quad, coeffs); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiGetAffineQuad", status)); NPPException.CheckNppStatus(status, this); return quad; }
/// <summary> /// Calculates bounding box of the affine transform projection of the given source rectangular ROI /// </summary> /// <param name="coeffs">Perspective transform coefficients [3,3]</param> /// <returns>Destination quadrangle [2,2]</returns> public double[,] GetPerspectiveBound(double[,] coeffs) { double[,] bound = new double[2, 2]; NppiRect rect = new NppiRect(_pointRoi, _sizeRoi); status = NPPNativeMethods.NPPi.PerspectiveTransforms.nppiGetPerspectiveBound(rect, bound, coeffs); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiGetPerspectiveBound", status)); NPPException.CheckNppStatus(status, this); return bound; }
/// <summary> /// planar image remap. /// </summary> /// <param name="src0">Source image (Channel 0)</param> /// <param name="src1">Source image (Channel 1)</param> /// <param name="src2">Source image (Channel 2)</param> /// <param name="src3">Source image (Channel 3)</param> /// <param name="dest0">Destination image (Channel 0)</param> /// <param name="dest1">Destination image (Channel 1)</param> /// <param name="dest2">Destination image (Channel 2)</param> /// <param name="dest3">Destination image (Channel 3)</param> /// <param name="pXMap">Device memory pointer to 2D image array of X coordinate values to be used when sampling source image. </param> /// <param name="pYMap">Device memory pointer to 2D image array of Y coordinate values to be used when sampling source image. </param> /// <param name="eInterpolation">The type of eInterpolation to perform resampling.</param> public static void Remap(NPPImage_8uC1 src0, NPPImage_8uC1 src1, NPPImage_8uC1 src2, NPPImage_8uC1 src3, NPPImage_8uC1 dest0, NPPImage_8uC1 dest1, NPPImage_8uC1 dest2, NPPImage_8uC1 dest3, NPPImage_32fC1 pXMap, NPPImage_32fC1 pYMap, InterpolationMode eInterpolation) { CUdeviceptr[] src = new CUdeviceptr[] { src0.DevicePointer, src1.DevicePointer, src2.DevicePointer, src3.DevicePointer }; CUdeviceptr[] dst = new CUdeviceptr[] { dest0.DevicePointerRoi, dest1.DevicePointerRoi, dest2.DevicePointerRoi, dest3.DevicePointerRoi }; NppiRect srcRect = new NppiRect(src0.PointRoi, src0.SizeRoi); NppStatus status = NPPNativeMethods.NPPi.Remap.nppiRemap_8u_P4R(src, src0.SizeRoi, src0.Pitch, srcRect, pXMap.DevicePointerRoi, pXMap.Pitch, pYMap.DevicePointerRoi, pYMap.Pitch, dst, dest0.Pitch, dest0.SizeRoi, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiRemap_8u_P4R", status)); NPPException.CheckNppStatus(status, null); }
/// <summary> /// planar image resize. /// </summary> /// <param name="src0">Source image (Channel 0)</param> /// <param name="src1">Source image (Channel 1)</param> /// <param name="src2">Source image (Channel 2)</param> /// <param name="src3">Source image (Channel 3)</param> /// <param name="dest0">Destination image (Channel 0)</param> /// <param name="dest1">Destination image (Channel 1)</param> /// <param name="dest2">Destination image (Channel 2)</param> /// <param name="dest3">Destination image (Channel 3)</param> /// <param name="nXFactor">Factor by which x dimension is changed. </param> /// <param name="nYFactor">Factor by which y dimension is changed. </param> /// <param name="nXShift">Source pixel shift in x-direction.</param> /// <param name="nYShift">Source pixel shift in y-direction.</param> /// <param name="eInterpolation">The type of eInterpolation to perform resampling.</param> public static void ResizeSqrPixel(NPPImage_8uC1 src0, NPPImage_8uC1 src1, NPPImage_8uC1 src2, NPPImage_8uC1 src3, NPPImage_8uC1 dest0, NPPImage_8uC1 dest1, NPPImage_8uC1 dest2, NPPImage_8uC1 dest3, double nXFactor, double nYFactor, double nXShift, double nYShift, InterpolationMode eInterpolation) { CUdeviceptr[] src = new CUdeviceptr[] { src0.DevicePointer, src1.DevicePointer, src2.DevicePointer, src3.DevicePointer }; CUdeviceptr[] dst = new CUdeviceptr[] { dest0.DevicePointer, dest1.DevicePointer, dest2.DevicePointer, dest3.DevicePointer }; NppiRect srcRect = new NppiRect(src0.PointRoi, src0.SizeRoi); NppiRect dstRect = new NppiRect(dest0.PointRoi, dest0.SizeRoi); NppStatus status = NPPNativeMethods.NPPi.ResizeSqrPixel.nppiResizeSqrPixel_8u_P4R(src, src0.SizeRoi, src0.Pitch, srcRect, dst, dest0.Pitch, dstRect, nXFactor, nYFactor, nXShift, nYShift, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiResizeSqrPixel_8u_P4R", status)); NPPException.CheckNppStatus(status, null); }
/// <summary> /// image conversion. Not affecting Alpha. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="nMin">specifies the minimum saturation value to which every output value will be clamped.</param> /// <param name="nMax">specifies the maximum saturation value to which every output value will be clamped.</param> public void ScaleA(NPPImage_32fC4 dst, float nMin, float nMax) { NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi); status = NPPNativeMethods.NPPi.Scale.nppiScale_8u32f_AC4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, nMin, nMax); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiScale_8u32f_AC4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Subtract(NppiSize src, NppiRect value) { NppiRect ret = new NppiRect(value.x, value.y, src.width - value.width, src.height - value.height); return ret; }
/// <summary> /// image conversion. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="hint">algorithm performance or accuracy selector, currently ignored</param> public void Scale(NPPImage_8uC4 dst, NppHintAlgorithm hint) { NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi); status = NPPNativeMethods.NPPi.Scale.nppiScale_32s8u_C4R(_devPtrRoi, _pitch, dst.DevicePointerRoi, dst.Pitch, _sizeRoi, hint); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiScale_32s8u_C4R", status)); NPPException.CheckNppStatus(status, this); }
/// <summary> /// per element Multiply /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Multiply(NppiRect src, int value) { NppiRect ret = new NppiRect(src.x * value, src.y * value, src.width * value, src.height * value); return ret; }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Add(NppiRect src, int value) { NppiRect ret = new NppiRect(src.x + value, src.y + value, src.width + value, src.height + value); return ret; }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Multiply(NppiPoint src, NppiRect value) { NppiRect ret = new NppiRect(src.x * value.x, src.y * value.y, value.width, value.height); return ret; }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Add(NppiPoint src, NppiRect value) { NppiRect ret = new NppiRect(src.x + value.x, src.y + value.y, value.width, value.height); return ret; }
/// <summary> /// per element Divide /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Divide(NppiRect src, int value) { NppiRect ret = new NppiRect(src.x / value, src.y / value, src.width / value, src.height / value); return ret; }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Add(NppiSize src, NppiRect value) { NppiRect ret = new NppiRect(value.x, value.y, src.width + value.width, src.height + value.height); return ret; }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Divide(NppiPoint src, NppiRect value) { NppiRect ret = new NppiRect(src.x / value.x, src.y / value.y, value.width, value.height); return ret; }
/// <summary> /// per element Substract /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Subtract(NppiRect src, int value) { NppiRect ret = new NppiRect(src.x - value, src.y - value, src.width - value, src.height - value); return ret; }
/// <summary> /// /// </summary> /// <param name="value"></param> /// <returns></returns> public bool Equals(NppiRect value) { bool ret = true; ret &= this.x == value.x; ret &= this.width == value.width; ret &= this.y == value.y; ret &= this.height == value.height; return ret; }
/// <summary> /// per element Substract /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Subtract(int src, NppiRect value) { NppiRect ret = new NppiRect(src - value.x, src - value.y, src - value.width, src - value.height); return ret; }
/// <summary> /// Replaces this Rectangle with the intersection of itself and the specified Rectangle. /// </summary> /// <param name="rect"></param> public void Intersect(NppiRect rect) { int iX = Left; if (iX < rect.Left) { iX = rect.Left; } int iY = Top; if (iY < rect.Top) { iY = rect.Top; } int iX2 = Right; if (iX2 > rect.Right) { iX2 = rect.Right; } int iY2 = Bottom; if (iY2 > rect.Bottom) { iY2 = rect.Bottom; } int iWidth = iX2 - iX + 1; int iHeight = iY2 - iY + 1; if (iWidth <= 0 || iHeight <= 0) { iX = 0; iY = 0; iWidth = 0; iHeight = 0; } x = iX; y = iY; width = iWidth; height = iHeight; }
/// <summary> /// per element Add /// </summary> /// <param name="src"></param> /// <param name="value"></param> /// <returns></returns> public static NppiRect Subtract(NppiPoint src, NppiRect value) { NppiRect ret = new NppiRect(src.x - value.x, src.y - value.y, value.width, value.height); return ret; }
/// <summary> /// Determines if this rectangle intersects with rect. /// </summary> /// <param name="rect"></param> /// <returns></returns> public bool IntersectsWith(NppiRect rect) { int iX = Left; if (iX < rect.Left) { iX = rect.Left; } int iY = Top; if (iY < rect.Top) { iY = rect.Top; } int iX2 = Right; if (iX2 > rect.Right) { iX2 = rect.Right; } int iY2 = Bottom; if (iY2 > rect.Bottom) { iY2 = rect.Bottom; } int iWidth = iX2 - iX + 1; int iHeight = iY2 - iY + 1; if (iWidth <= 0 || iHeight <= 0) { return false; } return true; }
/// <summary> /// image resize. Not affecting Alpha. /// </summary> /// <param name="dst">Destination-Image</param> /// <param name="nXFactor">Factor by which x dimension is changed. </param> /// <param name="nYFactor">Factor by which y dimension is changed. </param> /// <param name="nXShift">Source pixel shift in x-direction.</param> /// <param name="nYShift">Source pixel shift in y-direction.</param> /// <param name="eInterpolation">The type of eInterpolation to perform resampling.</param> public void ResizeSqrPixelA(NPPImage_8uC4 dst, double nXFactor, double nYFactor, double nXShift, double nYShift, InterpolationMode eInterpolation) { NppiRect srcRect = new NppiRect(_pointRoi, _sizeRoi); NppiRect dstRect = new NppiRect(dst.PointRoi, dst.SizeRoi); status = NPPNativeMethods.NPPi.ResizeSqrPixel.nppiResizeSqrPixel_8u_AC4R(_devPtr, _sizeRoi, _pitch, srcRect, dst.DevicePointer, dst.Pitch, dstRect, nXFactor, nYFactor, nXShift, nYShift, eInterpolation); Debug.WriteLine(String.Format("{0:G}, {1}: {2}", DateTime.Now, "nppiResizeSqrPixel_8u_AC4R", status)); NPPException.CheckNppStatus(status, this); }