Esempio n. 1
0
        /// <inheritdoc />
        public RemotePolicy(
            BrainParameters brainParameters,
            string behaviorName)
        {
            m_BehaviorName = behaviorName;
            var aca = Object.FindObjectOfType <Academy>();

            aca.LazyInitialization();
            m_Communicator = aca.Communicator;
            aca.Communicator.SubscribeBrain(m_BehaviorName, brainParameters);
        }
Esempio n. 2
0
        /// <summary>
        /// Convert a BrainParametersProto to a BrainParameters struct.
        /// </summary>
        /// <param name="bpp">An instance of a brain parameters protobuf object.</param>
        /// <returns>A BrainParameters struct.</returns>
        public static BrainParameters ToBrainParameters(this BrainParametersProto bpp)
        {
            var bp = new BrainParameters
            {
                vectorActionSize         = bpp.VectorActionSize.ToArray(),
                vectorActionDescriptions = bpp.VectorActionDescriptions.ToArray(),
                vectorActionSpaceType    = (SpaceType)bpp.VectorActionSpaceType
            };

            return(bp);
        }
Esempio n. 3
0
        /// <inheritdoc />
        public BarracudaPolicy(
            BrainParameters brainParameters,
            NNModel model,
            InferenceDevice inferenceDevice)
        {
            var aca = Object.FindObjectOfType <Academy>();

            aca.LazyInitialization();
            var modelRunner = aca.GetOrCreateModelRunner(model, brainParameters, inferenceDevice);

            m_ModelRunner = modelRunner;
        }
Esempio n. 4
0
        /// <summary>
        /// Creates or retrieves an existing ModelRunner that uses the same
        /// NNModel and the InferenceDevice as provided.
        /// </summary>
        /// <param name="model"> The NNModel the ModelRunner must use </param>
        /// <param name="brainParameters"> The brainParameters used to create
        /// the ModelRunner </param>
        /// <param name="inferenceDevice"> The inference device (CPU or GPU)
        /// the ModelRunner will use </param>
        /// <returns> The ModelRunner compatible with the input settings</returns>
        internal ModelRunner GetOrCreateModelRunner(
            NNModel model, BrainParameters brainParameters, InferenceDevice inferenceDevice)
        {
            var modelRunner = m_ModelRunners.Find(x => x.HasModel(model, inferenceDevice));

            if (modelRunner == null)
            {
                modelRunner = new ModelRunner(
                    model, brainParameters, inferenceDevice);
                m_ModelRunners.Add(modelRunner);
            }
            return(modelRunner);
        }
Esempio n. 5
0
        /// <summary>
        /// Writes brain parameters to file.
        /// </summary>
        void WriteBrainParameters(string brainName, BrainParameters brainParameters)
        {
            if (m_Writer == null)
            {
                // Already closed
                return;
            }

            // Writes BrainParameters to file.
            m_Writer.Seek(MetaDataBytes + 1, 0);
            var brainProto = brainParameters.ToProto(brainName, false);

            brainProto.WriteDelimitedTo(m_Writer);
        }
Esempio n. 6
0
        /// <summary>
        /// Converts a Brain into to a Protobuf BrainInfoProto so it can be sent
        /// </summary>
        /// <returns>The BrainInfoProto generated.</returns>
        /// <param name="bp">The instance of BrainParameter to extend.</param>
        /// <param name="name">The name of the brain.</param>
        /// <param name="isTraining">Whether or not the Brain is training.</param>
        public static BrainParametersProto ToProto(this BrainParameters bp, string name, bool isTraining)
        {
            var brainParametersProto = new BrainParametersProto
            {
                VectorActionSize      = { bp.vectorActionSize },
                VectorActionSpaceType =
                    (SpaceTypeProto)bp.vectorActionSpaceType,
                BrainName  = name,
                IsTraining = isTraining
            };

            brainParametersProto.VectorActionDescriptions.AddRange(bp.vectorActionDescriptions);
            return(brainParametersProto);
        }
Esempio n. 7
0
        /// Helper function that resets all the data structures associated with
        /// the agent. Typically used when the agent is being initialized or reset
        /// at the end of an episode.
        void ResetData()
        {
            if (brain == null)
            {
                return;
            }

            BrainParameters param = brain.brainParameters;

            if (param.vectorActionSpaceType == SpaceType.continuous)
            {
                action.vectorActions     = new float[param.vectorActionSize];
                info.storedVectorActions = new float[param.vectorActionSize];
            }
            else
            {
                action.vectorActions     = new float[1];
                info.storedVectorActions = new float[1];
            }

            if (info.textObservation == null)
            {
                info.textObservation = "";
            }
            action.textActions = "";
            info.memories      = new List <float>();
            action.memories    = new List <float>();
            if (param.vectorObservationSpaceType == SpaceType.continuous)
            {
                info.vectorObservation =
                    new List <float>(param.vectorObservationSize);
                info.stackedVectorObservation =
                    new List <float>(param.vectorObservationSize
                                     * brain.brainParameters.numStackedVectorObservations);
                info.stackedVectorObservation.AddRange(
                    new float[param.vectorObservationSize
                              * param.numStackedVectorObservations]);
            }
            else
            {
                info.vectorObservation        = new List <float>(1);
                info.stackedVectorObservation =
                    new List <float>(param.numStackedVectorObservations);
                info.stackedVectorObservation.AddRange(
                    new float[param.numStackedVectorObservations]);
            }

            info.visualObservations = new List <Texture2D>();
        }
Esempio n. 8
0
        /// Helper function that resets all the data structures associated with
        /// the agent. Typically used when the agent is being initialized or reset
        /// at the end of an episode.
        void ResetData()
        {
            if (brain == null)
            {
                return;
            }

            BrainParameters param = brain.brainParameters;

            actionMasker = new ActionMasker(param);
            if (param.vectorActionSpaceType == SpaceType.continuous)
            {
                action.vectorActions     = new float[param.vectorActionSize[0]];
                info.storedVectorActions = new float[param.vectorActionSize[0]];
            }
            else
            {
                action.vectorActions     = new float[param.vectorActionSize.Length];
                info.storedVectorActions = new float[param.vectorActionSize.Length];
            }

            if (info.textObservation == null)
            {
                info.textObservation = "";
            }
            action.textActions     = "";
            info.memories          = new List <float>();
            action.memories        = new List <float>();
            info.vectorObservation =
                new List <float>(param.vectorObservationSize);
            info.stackedVectorObservation =
                new List <float>(param.vectorObservationSize
                                 * brain.brainParameters.numStackedVectorObservations);
            info.stackedVectorObservation.AddRange(
                new float[param.vectorObservationSize
                          * param.numStackedVectorObservations]);

            info.visualObservations = new List <Texture2D>();

            /// Added by M.Baske to enable frame-stacking.
            ///
            visualObservations = brain.gameObject.GetComponent <VisualObservations>();
            if (visualObservations)
            {
                visualObservations.OnAgentResetData(this);
            }
        }
Esempio n. 9
0
        /// Helper function that resets all the data structures associated with
        /// the agent. Typically used when the agent is being initialized or reset
        /// at the end of an episode.
        void ResetData()
        {
            if (brain == null)
            {
                return;
            }

            BrainParameters param = brain.brainParameters;

            actionMasker = new ActionMasker(param);
            // If we haven't initialized vectorActions, initialize to 0. This should only
            // happen during the creation of the Agent. In subsequent episodes, vectorAction
            // should stay the previous action before the Done(), so that it is properly recorded.
            if (action.vectorActions == null)
            {
                if (param.vectorActionSpaceType == SpaceType.continuous)
                {
                    action.vectorActions     = new float[param.vectorActionSize[0]];
                    info.storedVectorActions = new float[param.vectorActionSize[0]];
                }
                else
                {
                    action.vectorActions     = new float[param.vectorActionSize.Length];
                    info.storedVectorActions = new float[param.vectorActionSize.Length];
                }
            }

            if (info.textObservation == null)
            {
                info.textObservation = "";
            }
            action.textActions     = "";
            info.memories          = new List <float>();
            action.memories        = new List <float>();
            info.vectorObservation =
                new List <float>(param.vectorObservationSize);
            info.stackedVectorObservation =
                new List <float>(param.vectorObservationSize
                                 * brain.brainParameters.numStackedVectorObservations);
            info.stackedVectorObservation.AddRange(
                new float[param.vectorObservationSize
                          * param.numStackedVectorObservations]);

            info.visualObservations = new List <Texture2D>();
            info.customObservation  = null;
        }
Esempio n. 10
0
        /// <summary>
        /// Writes the initial data to the stream.
        /// </summary>
        public void Initialize(
            string demonstrationName, BrainParameters brainParameters, string brainName)
        {
            if (m_Writer == null)
            {
                // Already closed
                return;
            }

            m_MetaData = new DemonstrationMetaData {
                demonstrationName = demonstrationName
            };
            var metaProto = m_MetaData.ToProto();

            metaProto.WriteDelimitedTo(m_Writer);

            WriteBrainParameters(brainName, brainParameters);
        }
Esempio n. 11
0
        public override void OnImportAsset(AssetImportContext ctx)
        {
            var inputType = Path.GetExtension(ctx.assetPath);

            if (inputType == null)
            {
                throw new Exception("Demonstration import error.");
            }

            try
            {
                // Read first two proto objects containing metadata and brain parameters.
                Stream reader = File.OpenRead(ctx.assetPath);

                var metaDataProto = DemonstrationMetaProto.Parser.ParseDelimitedFrom(reader);
                var metaData      = new DemonstrationMetaData(metaDataProto);

                reader.Seek(DemonstrationStore.MetaDataBytes + 1, 0);
                var brainParamsProto = BrainParametersProto.Parser.ParseDelimitedFrom(reader);
                var brainParameters  = new BrainParameters(brainParamsProto);

                reader.Close();

                var demonstration = ScriptableObject.CreateInstance <Demonstration>();
                demonstration.Initialize(brainParameters, metaData);
                userData = demonstration.ToString();

                Texture2D texture = (Texture2D)
                                    AssetDatabase.LoadAssetAtPath(IconPath, typeof(Texture2D));

#if UNITY_2017_3_OR_NEWER
                ctx.AddObjectToAsset(ctx.assetPath, demonstration, texture);
                ctx.SetMainObject(demonstration);
#else
                ctx.SetMainAsset(ctx.assetPath, demonstration);
#endif
            }
            catch
            {
                return;
            }
        }
Esempio n. 12
0
 internal DiscreteActionMasker(BrainParameters brainParameters)
 {
     m_BrainParameters = brainParameters;
 }
Esempio n. 13
0
 public ActionMasker(BrainParameters brainParameters)
 {
     m_BrainParameters = brainParameters;
 }
        public override void OnInspectorGUI()
        {
            Brain            myBrain         = (Brain)target;
            SerializedObject serializedBrain = serializedObject;

            if (myBrain.transform.parent == null)
            {
                EditorGUILayout.HelpBox(
                    "A Brain GameObject must be a child of an Academy GameObject!",
                    MessageType.Error);
            }
            else if (myBrain.transform.parent.GetComponent <Academy>() == null)
            {
                EditorGUILayout.HelpBox(
                    "The Parent of a Brain must have an Academy Component attached to it!",
                    MessageType.Error);
            }

            BrainParameters parameters = myBrain.brainParameters;

            if (parameters.vectorActionDescriptions == null ||
                parameters.vectorActionDescriptions.Length != parameters.vectorActionSize)
            {
                parameters.vectorActionDescriptions = new string[parameters.vectorActionSize];
            }

            serializedBrain.Update();


            _Foldout = EditorGUILayout.Foldout(_Foldout, "Brain Parameters");
            int indentLevel = EditorGUI.indentLevel;

            if (_Foldout)
            {
                EditorGUI.indentLevel++;
                EditorGUILayout.LabelField("Vector Observation");
                EditorGUI.indentLevel++;

                SerializedProperty bpVectorObsSize =
                    serializedBrain.FindProperty("brainParameters.vectorObservationSize");
                EditorGUILayout.PropertyField(bpVectorObsSize, new GUIContent("Space Size",
                                                                              "Length of state " +
                                                                              "vector for brain (In Continuous state space)." +
                                                                              "Or number of possible values (in Discrete state space)."));


                SerializedProperty bpNumStackedVectorObs =
                    serializedBrain.FindProperty("brainParameters.numStackedVectorObservations");
                EditorGUILayout.PropertyField(bpNumStackedVectorObs, new GUIContent(
                                                  "Stacked Vectors", "Number of states that" +
                                                  " will be stacked before beeing fed to the neural network."));

                EditorGUI.indentLevel--;
                SerializedProperty bpCamResol =
                    serializedBrain.FindProperty("brainParameters.cameraResolutions");
                EditorGUILayout.PropertyField(bpCamResol, new GUIContent("Visual Observation",
                                                                         "Describes height, " +
                                                                         "width, and whether to greyscale visual observations for the Brain."), true);

                EditorGUILayout.LabelField("Vector Action");
                EditorGUI.indentLevel++;

                SerializedProperty bpVectorActionType =
                    serializedBrain.FindProperty("brainParameters.vectorActionSpaceType");
                EditorGUILayout.PropertyField(bpVectorActionType, new GUIContent("Space Type",
                                                                                 "Corresponds to whether state" +
                                                                                 " vector contains a single integer (Discrete) " +
                                                                                 "or a series of real-valued floats (Continuous)."));

                SerializedProperty bpVectorActionSize =
                    serializedBrain.FindProperty("brainParameters.vectorActionSize");
                EditorGUILayout.PropertyField(bpVectorActionSize, new GUIContent("Space Size",
                                                                                 "Length of action vector " +
                                                                                 "for brain (In Continuous state space)." +
                                                                                 "Or number of possible values (In Discrete action space)."));

                SerializedProperty bpVectorActionDescription =
                    serializedBrain.FindProperty("brainParameters.vectorActionDescriptions");
                EditorGUILayout.PropertyField(bpVectorActionDescription, new GUIContent(
                                                  "Action Descriptions", "A list of strings used to name" +
                                                  " the available actions for the Brain."), true);
            }

            EditorGUI.indentLevel = indentLevel;
            SerializedProperty bt = serializedBrain.FindProperty("brainType");

            EditorGUILayout.PropertyField(bt);

            if (bt.enumValueIndex < 0)
            {
                bt.enumValueIndex = (int)BrainType.Player;
            }

            serializedBrain.ApplyModifiedProperties();

            myBrain.UpdateCoreBrains();
            myBrain.coreBrain.OnInspector();

#if !NET_4_6 && ENABLE_TENSORFLOW
            EditorGUILayout.HelpBox("You cannot have ENABLE_TENSORFLOW without NET_4_6", MessageType.Error);
        #endif
        }
Esempio n. 15
0
 public void Initialize(BrainParameters brainParameters,
                        DemonstrationMetaData demonstrationMetaData)
 {
     this.brainParameters = brainParameters;
     metaData             = demonstrationMetaData;
 }
Esempio n. 16
0
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (brain == null)
            {
                return;
            }

            info.memories            = action.memories;
            info.storedVectorActions = action.vectorActions;
            info.storedTextActions   = action.textActions;
            info.vectorObservation.Clear();
            actionMasker.ResetMask();
            CollectObservations();
            info.actionMasks = actionMasker.GetMask();

            BrainParameters param = brain.brainParameters;

            if (info.vectorObservation.Count != param.vectorObservationSize)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Vector Observation size mismatch between continuous " +
                                                   "agent {0} and brain {1}. " +
                                                   "Was Expecting {2} but received {3}. ",
                                                   gameObject.name, brain.name,
                                                   brain.brainParameters.vectorObservationSize,
                                                   info.vectorObservation.Count));
            }

            info.stackedVectorObservation.RemoveRange(
                0, param.vectorObservationSize);
            info.stackedVectorObservation.AddRange(info.vectorObservation);

            info.visualObservations.Clear();
            var visualObservationCount = agentParameters.agentCameras.Count + agentParameters.agentRenderTextures.Count;

            if (param.cameraResolutions.Length > visualObservationCount)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Not enough cameras/renderTextures for agent {0} : Brain {1} expecting at " +
                                                   "least {2} cameras/renderTextures but only {3} were present.",
                                                   gameObject.name, brain.name,
                                                   brain.brainParameters.cameraResolutions.Length,
                                                   visualObservationCount));
            }

            //First add all cameras
            for (int i = 0; i < agentParameters.agentCameras.Count; i++)
            {
                ObservationToTexture(
                    agentParameters.agentCameras[i],
                    param.cameraResolutions[i].width,
                    param.cameraResolutions[i].height,
                    ref textureArray[i]);
                info.visualObservations.Add(textureArray[i]);
            }

            //Then add all renderTextures
            var camCount = agentParameters.agentCameras.Count;

            for (int i = 0; i < agentParameters.agentRenderTextures.Count; i++)
            {
                ObservationToTexture(
                    agentParameters.agentRenderTextures[i],
                    param.cameraResolutions[camCount + i].width,
                    param.cameraResolutions[camCount + i].height,
                    ref textureArray[i]);
                info.visualObservations.Add(textureArray[i]);
            }

            info.reward         = reward;
            info.done           = done;
            info.maxStepReached = maxStepReached;
            info.id             = id;

            brain.SendState(this, info);

            if (recorder != null && recorder.record && Application.isEditor)
            {
                recorder.WriteExperience(info);
            }

            info.textObservation = "";
        }
Esempio n. 17
0
 public ActionMasker(BrainParameters brainParameters)
 {
     this._brainParameters = brainParameters;
 }
Esempio n. 18
0
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (brain == null)
            {
                return;
            }

            info.memories            = action.memories;
            info.storedVectorActions = action.vectorActions;
            info.storedTextActions   = action.textActions;
            info.vectorObservation.Clear();
            CollectObservations();

            BrainParameters param = brain.brainParameters;

            if (param.vectorObservationSpaceType == SpaceType.continuous)
            {
                if (info.vectorObservation.Count != param.vectorObservationSize)
                {
                    throw new UnityAgentsException(string.Format(
                                                       "Vector Observation size mismatch between continuous " +
                                                       "agent {0} and brain {1}. " +
                                                       "Was Expecting {2} but received {3}. ",
                                                       gameObject.name, brain.gameObject.name,
                                                       brain.brainParameters.vectorObservationSize,
                                                       info.vectorObservation.Count));
                }

                info.stackedVectorObservation.RemoveRange(
                    0, param.vectorObservationSize);
                info.stackedVectorObservation.AddRange(info.vectorObservation);
            }
            else
            {
                if (info.vectorObservation.Count != 1)
                {
                    throw new UnityAgentsException(string.Format(
                                                       "Vector Observation size mismatch between discrete agent" +
                                                       " {0} and brain {1}. Was Expecting {2} but received {3}. ",
                                                       gameObject.name, brain.gameObject.name,
                                                       1, info.vectorObservation.Count));
                }

                info.stackedVectorObservation.RemoveRange(0, 1);
                info.stackedVectorObservation.AddRange(info.vectorObservation);
            }

            info.visualObservations.Clear();
            if (param.cameraResolutions.Length > agentParameters.agentCameras.Count)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Not enough cameras for agent {0} : Bain {1} expecting at " +
                                                   "least {2} cameras but only {3} were present.",
                                                   gameObject.name, brain.gameObject.name,
                                                   brain.brainParameters.cameraResolutions.Length,
                                                   agentParameters.agentCameras.Count));
            }

            for (int i = 0; i < brain.brainParameters.cameraResolutions.Length; i++)
            {
                info.visualObservations.Add(ObservationToTexture(
                                                agentParameters.agentCameras[i],
                                                param.cameraResolutions[i].width,
                                                param.cameraResolutions[i].height));
            }

            info.reward         = reward;
            info.done           = done;
            info.maxStepReached = maxStepReached;
            info.id             = id;

            brain.SendState(this, info);
            info.textObservation = "";
        }
Esempio n. 19
0
        /// <summary>
        /// Sends the Agent info to the linked Brain.
        /// </summary>
        void SendInfoToBrain()
        {
            if (brain == null)
            {
                return;
            }

            info.memories            = action.memories;
            info.storedVectorActions = action.vectorActions;
            info.storedTextActions   = action.textActions;
            info.vectorObservation.Clear();
            actionMasker.ResetMask();
            CollectObservations();
            info.actionMasks = actionMasker.GetMask();

            BrainParameters param = brain.brainParameters;

            if (info.vectorObservation.Count != param.vectorObservationSize)
            {
                throw new UnityAgentsException(string.Format(
                                                   "Vector Observation size mismatch between continuous " +
                                                   "agent {0} and brain {1}. " +
                                                   "Was Expecting {2} but received {3}. ",
                                                   gameObject.name, brain.gameObject.name,
                                                   brain.brainParameters.vectorObservationSize,
                                                   info.vectorObservation.Count));
            }

            info.stackedVectorObservation.RemoveRange(
                0, param.vectorObservationSize);
            info.stackedVectorObservation.AddRange(info.vectorObservation);

            info.visualObservations.Clear();

            /// Modified by M.Baske to enable frame-stacking.
            ///
            if (visualObservations)
            {
                visualObservations.ApplyObservations(this, info.visualObservations);
            }

            /// Original code:

            /*
             * if (param.cameraResolutions.Length > agentParameters.agentCameras.Count)
             * {
             *  throw new UnityAgentsException(string.Format(
             *      "Not enough cameras for agent {0} : Bain {1} expecting at " +
             *      "least {2} cameras but only {3} were present.",
             *      gameObject.name, brain.gameObject.name,
             *      brain.brainParameters.cameraResolutions.Length,
             *      agentParameters.agentCameras.Count));
             * }
             *
             * for (int i = 0; i < brain.brainParameters.cameraResolutions.Length; i++)
             * {
             *  ObservationToTexture(
             *      agentParameters.agentCameras[i],
             *      param.cameraResolutions[i].width,
             *      param.cameraResolutions[i].height,
             *      ref textureArray[i]);
             *  info.visualObservations.Add(textureArray[i]);
             * }
             */

            info.reward         = reward;
            info.done           = done;
            info.maxStepReached = maxStepReached;
            info.id             = id;

            brain.SendState(this, info);
            info.textObservation = "";
        }
Esempio n. 20
0
 public void Awake()
 {
     brainParameters =
         gameObject.GetComponent <Brain>().brainParameters;
     actionSpaceType = brainParameters.vectorActionSpaceType;
 }